Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

from datetime import datetime, timedelta 

import hashlib 

import os 

import random 

import tempfile 

import time 

from glob import glob 

 

from py4j.protocol import Py4JJavaError 

 

from pyspark import shuffle, RDD 

from pyspark.resource import ExecutorResourceRequests, ResourceProfileBuilder,\ 

TaskResourceRequests 

from pyspark.serializers import CloudPickleSerializer, BatchedSerializer, PickleSerializer,\ 

MarshalSerializer, UTF8Deserializer, NoOpSerializer 

from pyspark.testing.utils import ReusedPySparkTestCase, SPARK_HOME, QuietTest 

 

 

global_func = lambda: "Hi" 

 

 

class RDDTests(ReusedPySparkTestCase): 

 

def test_range(self): 

self.assertEqual(self.sc.range(1, 1).count(), 0) 

self.assertEqual(self.sc.range(1, 0, -1).count(), 1) 

self.assertEqual(self.sc.range(0, 1 << 40, 1 << 39).count(), 2) 

 

def test_id(self): 

rdd = self.sc.parallelize(range(10)) 

id = rdd.id() 

self.assertEqual(id, rdd.id()) 

rdd2 = rdd.map(str).filter(bool) 

id2 = rdd2.id() 

self.assertEqual(id + 1, id2) 

self.assertEqual(id2, rdd2.id()) 

 

def test_empty_rdd(self): 

rdd = self.sc.emptyRDD() 

self.assertTrue(rdd.isEmpty()) 

 

def test_sum(self): 

self.assertEqual(0, self.sc.emptyRDD().sum()) 

self.assertEqual(6, self.sc.parallelize([1, 2, 3]).sum()) 

 

def test_to_localiterator(self): 

rdd = self.sc.parallelize([1, 2, 3]) 

it = rdd.toLocalIterator() 

self.assertEqual([1, 2, 3], sorted(it)) 

 

rdd2 = rdd.repartition(1000) 

it2 = rdd2.toLocalIterator() 

self.assertEqual([1, 2, 3], sorted(it2)) 

 

def test_to_localiterator_prefetch(self): 

# Test that we fetch the next partition in parallel 

# We do this by returning the current time and: 

# reading the first elem, waiting, and reading the second elem 

# If not in parallel then these would be at different times 

# But since they are being computed in parallel we see the time 

# is "close enough" to the same. 

rdd = self.sc.parallelize(range(2), 2) 

times1 = rdd.map(lambda x: datetime.now()) 

times2 = rdd.map(lambda x: datetime.now()) 

times_iter_prefetch = times1.toLocalIterator(prefetchPartitions=True) 

times_iter = times2.toLocalIterator(prefetchPartitions=False) 

times_prefetch_head = next(times_iter_prefetch) 

times_head = next(times_iter) 

time.sleep(2) 

times_next = next(times_iter) 

times_prefetch_next = next(times_iter_prefetch) 

self.assertTrue(times_next - times_head >= timedelta(seconds=2)) 

self.assertTrue(times_prefetch_next - times_prefetch_head < timedelta(seconds=1)) 

 

def test_save_as_textfile_with_unicode(self): 

# Regression test for SPARK-970 

x = u"\u00A1Hola, mundo!" 

data = self.sc.parallelize([x]) 

tempFile = tempfile.NamedTemporaryFile(delete=True) 

tempFile.close() 

data.saveAsTextFile(tempFile.name) 

raw_contents = b''.join(open(p, 'rb').read() 

for p in glob(tempFile.name + "/part-0000*")) 

self.assertEqual(x, raw_contents.strip().decode("utf-8")) 

 

def test_save_as_textfile_with_utf8(self): 

x = u"\u00A1Hola, mundo!" 

data = self.sc.parallelize([x.encode("utf-8")]) 

tempFile = tempfile.NamedTemporaryFile(delete=True) 

tempFile.close() 

data.saveAsTextFile(tempFile.name) 

raw_contents = b''.join(open(p, 'rb').read() 

for p in glob(tempFile.name + "/part-0000*")) 

self.assertEqual(x, raw_contents.strip().decode('utf8')) 

 

def test_transforming_cartesian_result(self): 

# Regression test for SPARK-1034 

rdd1 = self.sc.parallelize([1, 2]) 

rdd2 = self.sc.parallelize([3, 4]) 

cart = rdd1.cartesian(rdd2) 

result = cart.map(lambda x_y3: x_y3[0] + x_y3[1]).collect() 

 

def test_transforming_pickle_file(self): 

# Regression test for SPARK-2601 

data = self.sc.parallelize([u"Hello", u"World!"]) 

tempFile = tempfile.NamedTemporaryFile(delete=True) 

tempFile.close() 

data.saveAsPickleFile(tempFile.name) 

pickled_file = self.sc.pickleFile(tempFile.name) 

pickled_file.map(lambda x: x).collect() 

 

def test_cartesian_on_textfile(self): 

# Regression test for 

path = os.path.join(SPARK_HOME, "python/test_support/hello/hello.txt") 

a = self.sc.textFile(path) 

result = a.cartesian(a).collect() 

(x, y) = result[0] 

self.assertEqual(u"Hello World!", x.strip()) 

self.assertEqual(u"Hello World!", y.strip()) 

 

def test_cartesian_chaining(self): 

# Tests for SPARK-16589 

rdd = self.sc.parallelize(range(10), 2) 

self.assertSetEqual( 

set(rdd.cartesian(rdd).cartesian(rdd).collect()), 

set([((x, y), z) for x in range(10) for y in range(10) for z in range(10)]) 

) 

 

self.assertSetEqual( 

set(rdd.cartesian(rdd.cartesian(rdd)).collect()), 

set([(x, (y, z)) for x in range(10) for y in range(10) for z in range(10)]) 

) 

 

self.assertSetEqual( 

set(rdd.cartesian(rdd.zip(rdd)).collect()), 

set([(x, (y, y)) for x in range(10) for y in range(10)]) 

) 

 

def test_zip_chaining(self): 

# Tests for SPARK-21985 

rdd = self.sc.parallelize('abc', 2) 

self.assertSetEqual( 

set(rdd.zip(rdd).zip(rdd).collect()), 

set([((x, x), x) for x in 'abc']) 

) 

self.assertSetEqual( 

set(rdd.zip(rdd.zip(rdd)).collect()), 

set([(x, (x, x)) for x in 'abc']) 

) 

 

def test_union_pair_rdd(self): 

# SPARK-31788: test if pair RDDs can be combined by union. 

rdd = self.sc.parallelize([1, 2]) 

pair_rdd = rdd.zip(rdd) 

unionRDD = self.sc.union([pair_rdd, pair_rdd]) 

self.assertEqual( 

set(unionRDD.collect()), 

set([(1, 1), (2, 2), (1, 1), (2, 2)]) 

) 

self.assertEqual(unionRDD.count(), 4) 

 

def test_deleting_input_files(self): 

# Regression test for SPARK-1025 

tempFile = tempfile.NamedTemporaryFile(delete=False) 

tempFile.write(b"Hello World!") 

tempFile.close() 

data = self.sc.textFile(tempFile.name) 

filtered_data = data.filter(lambda x: True) 

self.assertEqual(1, filtered_data.count()) 

os.unlink(tempFile.name) 

with QuietTest(self.sc): 

self.assertRaises(Exception, lambda: filtered_data.count()) 

 

def test_sampling_default_seed(self): 

# Test for SPARK-3995 (default seed setting) 

data = self.sc.parallelize(range(1000), 1) 

subset = data.takeSample(False, 10) 

self.assertEqual(len(subset), 10) 

 

def test_aggregate_mutable_zero_value(self): 

# Test for SPARK-9021; uses aggregate and treeAggregate to build dict 

# representing a counter of ints 

from collections import defaultdict 

 

# Show that single or multiple partitions work 

data1 = self.sc.range(10, numSlices=1) 

data2 = self.sc.range(10, numSlices=2) 

 

def seqOp(x, y): 

x[y] += 1 

return x 

 

def comboOp(x, y): 

for key, val in y.items(): 

x[key] += val 

return x 

 

counts1 = data1.aggregate(defaultdict(int), seqOp, comboOp) 

counts2 = data2.aggregate(defaultdict(int), seqOp, comboOp) 

counts3 = data1.treeAggregate(defaultdict(int), seqOp, comboOp, 2) 

counts4 = data2.treeAggregate(defaultdict(int), seqOp, comboOp, 2) 

 

ground_truth = defaultdict(int, dict((i, 1) for i in range(10))) 

self.assertEqual(counts1, ground_truth) 

self.assertEqual(counts2, ground_truth) 

self.assertEqual(counts3, ground_truth) 

self.assertEqual(counts4, ground_truth) 

 

def test_aggregate_by_key_mutable_zero_value(self): 

# Test for SPARK-9021; uses aggregateByKey to make a pair RDD that 

# contains lists of all values for each key in the original RDD 

 

# list(range(...)) for Python 3.x compatibility (can't use * operator 

# on a range object) 

# list(zip(...)) for Python 3.x compatibility (want to parallelize a 

# collection, not a zip object) 

tuples = list(zip(list(range(10))*2, [1]*20)) 

# Show that single or multiple partitions work 

data1 = self.sc.parallelize(tuples, 1) 

data2 = self.sc.parallelize(tuples, 2) 

 

def seqOp(x, y): 

x.append(y) 

return x 

 

def comboOp(x, y): 

x.extend(y) 

return x 

 

values1 = data1.aggregateByKey([], seqOp, comboOp).collect() 

values2 = data2.aggregateByKey([], seqOp, comboOp).collect() 

# Sort lists to ensure clean comparison with ground_truth 

values1.sort() 

values2.sort() 

 

ground_truth = [(i, [1]*2) for i in range(10)] 

self.assertEqual(values1, ground_truth) 

self.assertEqual(values2, ground_truth) 

 

def test_fold_mutable_zero_value(self): 

# Test for SPARK-9021; uses fold to merge an RDD of dict counters into 

# a single dict 

from collections import defaultdict 

 

counts1 = defaultdict(int, dict((i, 1) for i in range(10))) 

counts2 = defaultdict(int, dict((i, 1) for i in range(3, 8))) 

counts3 = defaultdict(int, dict((i, 1) for i in range(4, 7))) 

counts4 = defaultdict(int, dict((i, 1) for i in range(5, 6))) 

all_counts = [counts1, counts2, counts3, counts4] 

# Show that single or multiple partitions work 

data1 = self.sc.parallelize(all_counts, 1) 

data2 = self.sc.parallelize(all_counts, 2) 

 

def comboOp(x, y): 

for key, val in y.items(): 

x[key] += val 

return x 

 

fold1 = data1.fold(defaultdict(int), comboOp) 

fold2 = data2.fold(defaultdict(int), comboOp) 

 

ground_truth = defaultdict(int) 

for counts in all_counts: 

for key, val in counts.items(): 

ground_truth[key] += val 

self.assertEqual(fold1, ground_truth) 

self.assertEqual(fold2, ground_truth) 

 

def test_fold_by_key_mutable_zero_value(self): 

# Test for SPARK-9021; uses foldByKey to make a pair RDD that contains 

# lists of all values for each key in the original RDD 

 

tuples = [(i, range(i)) for i in range(10)]*2 

# Show that single or multiple partitions work 

data1 = self.sc.parallelize(tuples, 1) 

data2 = self.sc.parallelize(tuples, 2) 

 

def comboOp(x, y): 

x.extend(y) 

return x 

 

values1 = data1.foldByKey([], comboOp).collect() 

values2 = data2.foldByKey([], comboOp).collect() 

# Sort lists to ensure clean comparison with ground_truth 

values1.sort() 

values2.sort() 

 

# list(range(...)) for Python 3.x compatibility 

ground_truth = [(i, list(range(i))*2) for i in range(10)] 

self.assertEqual(values1, ground_truth) 

self.assertEqual(values2, ground_truth) 

 

def test_aggregate_by_key(self): 

data = self.sc.parallelize([(1, 1), (1, 1), (3, 2), (5, 1), (5, 3)], 2) 

 

def seqOp(x, y): 

x.add(y) 

return x 

 

def combOp(x, y): 

x |= y 

return x 

 

sets = dict(data.aggregateByKey(set(), seqOp, combOp).collect()) 

self.assertEqual(3, len(sets)) 

self.assertEqual(set([1]), sets[1]) 

self.assertEqual(set([2]), sets[3]) 

self.assertEqual(set([1, 3]), sets[5]) 

 

def test_itemgetter(self): 

rdd = self.sc.parallelize([range(10)]) 

from operator import itemgetter 

self.assertEqual([1], rdd.map(itemgetter(1)).collect()) 

self.assertEqual([(2, 3)], rdd.map(itemgetter(2, 3)).collect()) 

 

def test_namedtuple_in_rdd(self): 

from collections import namedtuple 

Person = namedtuple("Person", "id firstName lastName") 

jon = Person(1, "Jon", "Doe") 

jane = Person(2, "Jane", "Doe") 

theDoes = self.sc.parallelize([jon, jane]) 

self.assertEqual([jon, jane], theDoes.collect()) 

 

def test_large_broadcast(self): 

N = 10000 

data = [[float(i) for i in range(300)] for i in range(N)] 

bdata = self.sc.broadcast(data) # 27MB 

m = self.sc.parallelize(range(1), 1).map(lambda x: len(bdata.value)).sum() 

self.assertEqual(N, m) 

 

def test_unpersist(self): 

N = 1000 

data = [[float(i) for i in range(300)] for i in range(N)] 

bdata = self.sc.broadcast(data) # 3MB 

bdata.unpersist() 

m = self.sc.parallelize(range(1), 1).map(lambda x: len(bdata.value)).sum() 

self.assertEqual(N, m) 

bdata.destroy(blocking=True) 

try: 

356 ↛ exit,   356 ↛ 3602 missed branches: 1) line 356 didn't run the lambda on line 356, 2) line 356 didn't jump to line 360 self.sc.parallelize(range(1), 1).map(lambda x: len(bdata.value)).sum() 

except Exception: 

pass 

else: 

raise AssertionError("job should fail after destroy the broadcast") 

 

def test_multiple_broadcasts(self): 

N = 1 << 21 

b1 = self.sc.broadcast(set(range(N))) # multiple blocks in JVM 

r = list(range(1 << 15)) 

random.shuffle(r) 

s = str(r).encode() 

checksum = hashlib.md5(s).hexdigest() 

b2 = self.sc.broadcast(s) 

r = list(set(self.sc.parallelize(range(10), 10).map( 

lambda x: (len(b1.value), hashlib.md5(b2.value).hexdigest())).collect())) 

self.assertEqual(1, len(r)) 

size, csum = r[0] 

self.assertEqual(N, size) 

self.assertEqual(checksum, csum) 

 

random.shuffle(r) 

s = str(r).encode() 

checksum = hashlib.md5(s).hexdigest() 

b2 = self.sc.broadcast(s) 

r = list(set(self.sc.parallelize(range(10), 10).map( 

lambda x: (len(b1.value), hashlib.md5(b2.value).hexdigest())).collect())) 

self.assertEqual(1, len(r)) 

size, csum = r[0] 

self.assertEqual(N, size) 

self.assertEqual(checksum, csum) 

 

def test_multithread_broadcast_pickle(self): 

import threading 

 

b1 = self.sc.broadcast(list(range(3))) 

b2 = self.sc.broadcast(list(range(3))) 

 

def f1(): 

return b1.value 

 

def f2(): 

return b2.value 

 

funcs_num_pickled = {f1: None, f2: None} 

 

def do_pickle(f, sc): 

command = (f, None, sc.serializer, sc.serializer) 

ser = CloudPickleSerializer() 

ser.dumps(command) 

 

def process_vars(sc): 

broadcast_vars = list(sc._pickled_broadcast_vars) 

num_pickled = len(broadcast_vars) 

sc._pickled_broadcast_vars.clear() 

return num_pickled 

 

def run(f, sc): 

do_pickle(f, sc) 

funcs_num_pickled[f] = process_vars(sc) 

 

# pickle f1, adds b1 to sc._pickled_broadcast_vars in main thread local storage 

do_pickle(f1, self.sc) 

 

# run all for f2, should only add/count/clear b2 from worker thread local storage 

t = threading.Thread(target=run, args=(f2, self.sc)) 

t.start() 

t.join() 

 

# count number of vars pickled in main thread, only b1 should be counted and cleared 

funcs_num_pickled[f1] = process_vars(self.sc) 

 

self.assertEqual(funcs_num_pickled[f1], 1) 

self.assertEqual(funcs_num_pickled[f2], 1) 

self.assertEqual(len(list(self.sc._pickled_broadcast_vars)), 0) 

 

def test_large_closure(self): 

N = 200000 

data = [float(i) for i in range(N)] 

rdd = self.sc.parallelize(range(1), 1).map(lambda x: len(data)) 

self.assertEqual(N, rdd.first()) 

# regression test for SPARK-6886 

self.assertEqual(1, rdd.map(lambda x: (x, 1)).groupByKey().count()) 

 

def test_zip_with_different_serializers(self): 

a = self.sc.parallelize(range(5)) 

b = self.sc.parallelize(range(100, 105)) 

self.assertEqual(a.zip(b).collect(), [(0, 100), (1, 101), (2, 102), (3, 103), (4, 104)]) 

a = a._reserialize(BatchedSerializer(PickleSerializer(), 2)) 

b = b._reserialize(MarshalSerializer()) 

self.assertEqual(a.zip(b).collect(), [(0, 100), (1, 101), (2, 102), (3, 103), (4, 104)]) 

# regression test for SPARK-4841 

path = os.path.join(SPARK_HOME, "python/test_support/hello/hello.txt") 

t = self.sc.textFile(path) 

cnt = t.count() 

self.assertEqual(cnt, t.zip(t).count()) 

rdd = t.map(str) 

self.assertEqual(cnt, t.zip(rdd).count()) 

# regression test for bug in _reserializer() 

self.assertEqual(cnt, t.zip(rdd).count()) 

 

def test_zip_with_different_object_sizes(self): 

# regress test for SPARK-5973 

a = self.sc.parallelize(range(10000)).map(lambda i: '*' * i) 

b = self.sc.parallelize(range(10000, 20000)).map(lambda i: '*' * i) 

self.assertEqual(10000, a.zip(b).count()) 

 

def test_zip_with_different_number_of_items(self): 

a = self.sc.parallelize(range(5), 2) 

# different number of partitions 

b = self.sc.parallelize(range(100, 106), 3) 

self.assertRaises(ValueError, lambda: a.zip(b)) 

with QuietTest(self.sc): 

# different number of batched items in JVM 

b = self.sc.parallelize(range(100, 104), 2) 

self.assertRaises(Exception, lambda: a.zip(b).count()) 

# different number of items in one pair 

b = self.sc.parallelize(range(100, 106), 2) 

self.assertRaises(Exception, lambda: a.zip(b).count()) 

# same total number of items, but different distributions 

a = self.sc.parallelize([2, 3], 2).flatMap(range) 

b = self.sc.parallelize([3, 2], 2).flatMap(range) 

self.assertEqual(a.count(), b.count()) 

self.assertRaises(Exception, lambda: a.zip(b).count()) 

 

def test_count_approx_distinct(self): 

rdd = self.sc.parallelize(range(1000)) 

self.assertTrue(950 < rdd.countApproxDistinct(0.03) < 1050) 

self.assertTrue(950 < rdd.map(float).countApproxDistinct(0.03) < 1050) 

self.assertTrue(950 < rdd.map(str).countApproxDistinct(0.03) < 1050) 

self.assertTrue(950 < rdd.map(lambda x: (x, -x)).countApproxDistinct(0.03) < 1050) 

 

rdd = self.sc.parallelize([i % 20 for i in range(1000)], 7) 

self.assertTrue(18 < rdd.countApproxDistinct() < 22) 

self.assertTrue(18 < rdd.map(float).countApproxDistinct() < 22) 

self.assertTrue(18 < rdd.map(str).countApproxDistinct() < 22) 

self.assertTrue(18 < rdd.map(lambda x: (x, -x)).countApproxDistinct() < 22) 

 

self.assertRaises(ValueError, lambda: rdd.countApproxDistinct(0.00000001)) 

 

def test_histogram(self): 

# empty 

rdd = self.sc.parallelize([]) 

self.assertEqual([0], rdd.histogram([0, 10])[1]) 

self.assertEqual([0, 0], rdd.histogram([0, 4, 10])[1]) 

self.assertRaises(ValueError, lambda: rdd.histogram(1)) 

 

# out of range 

rdd = self.sc.parallelize([10.01, -0.01]) 

self.assertEqual([0], rdd.histogram([0, 10])[1]) 

self.assertEqual([0, 0], rdd.histogram((0, 4, 10))[1]) 

 

# in range with one bucket 

rdd = self.sc.parallelize(range(1, 5)) 

self.assertEqual([4], rdd.histogram([0, 10])[1]) 

self.assertEqual([3, 1], rdd.histogram([0, 4, 10])[1]) 

 

# in range with one bucket exact match 

self.assertEqual([4], rdd.histogram([1, 4])[1]) 

 

# out of range with two buckets 

rdd = self.sc.parallelize([10.01, -0.01]) 

self.assertEqual([0, 0], rdd.histogram([0, 5, 10])[1]) 

 

# out of range with two uneven buckets 

rdd = self.sc.parallelize([10.01, -0.01]) 

self.assertEqual([0, 0], rdd.histogram([0, 4, 10])[1]) 

 

# in range with two buckets 

rdd = self.sc.parallelize([1, 2, 3, 5, 6]) 

self.assertEqual([3, 2], rdd.histogram([0, 5, 10])[1]) 

 

# in range with two bucket and None 

rdd = self.sc.parallelize([1, 2, 3, 5, 6, None, float('nan')]) 

self.assertEqual([3, 2], rdd.histogram([0, 5, 10])[1]) 

 

# in range with two uneven buckets 

rdd = self.sc.parallelize([1, 2, 3, 5, 6]) 

self.assertEqual([3, 2], rdd.histogram([0, 5, 11])[1]) 

 

# mixed range with two uneven buckets 

rdd = self.sc.parallelize([-0.01, 0.0, 1, 2, 3, 5, 6, 11.0, 11.01]) 

self.assertEqual([4, 3], rdd.histogram([0, 5, 11])[1]) 

 

# mixed range with four uneven buckets 

rdd = self.sc.parallelize([-0.01, 0.0, 1, 2, 3, 5, 6, 11.01, 12.0, 199.0, 200.0, 200.1]) 

self.assertEqual([4, 2, 1, 3], rdd.histogram([0.0, 5.0, 11.0, 12.0, 200.0])[1]) 

 

# mixed range with uneven buckets and NaN 

rdd = self.sc.parallelize([-0.01, 0.0, 1, 2, 3, 5, 6, 11.01, 12.0, 

199.0, 200.0, 200.1, None, float('nan')]) 

self.assertEqual([4, 2, 1, 3], rdd.histogram([0.0, 5.0, 11.0, 12.0, 200.0])[1]) 

 

# out of range with infinite buckets 

rdd = self.sc.parallelize([10.01, -0.01, float('nan'), float("inf")]) 

self.assertEqual([1, 2], rdd.histogram([float('-inf'), 0, float('inf')])[1]) 

 

# invalid buckets 

self.assertRaises(ValueError, lambda: rdd.histogram([])) 

self.assertRaises(ValueError, lambda: rdd.histogram([1])) 

self.assertRaises(ValueError, lambda: rdd.histogram(0)) 

self.assertRaises(TypeError, lambda: rdd.histogram({})) 

 

# without buckets 

rdd = self.sc.parallelize(range(1, 5)) 

self.assertEqual(([1, 4], [4]), rdd.histogram(1)) 

 

# without buckets single element 

rdd = self.sc.parallelize([1]) 

self.assertEqual(([1, 1], [1]), rdd.histogram(1)) 

 

# without bucket no range 

rdd = self.sc.parallelize([1] * 4) 

self.assertEqual(([1, 1], [4]), rdd.histogram(1)) 

 

# without buckets basic two 

rdd = self.sc.parallelize(range(1, 5)) 

self.assertEqual(([1, 2.5, 4], [2, 2]), rdd.histogram(2)) 

 

# without buckets with more requested than elements 

rdd = self.sc.parallelize([1, 2]) 

buckets = [1 + 0.2 * i for i in range(6)] 

hist = [1, 0, 0, 0, 1] 

self.assertEqual((buckets, hist), rdd.histogram(5)) 

 

# invalid RDDs 

rdd = self.sc.parallelize([1, float('inf')]) 

self.assertRaises(ValueError, lambda: rdd.histogram(2)) 

rdd = self.sc.parallelize([float('nan')]) 

self.assertRaises(ValueError, lambda: rdd.histogram(2)) 

 

# string 

rdd = self.sc.parallelize(["ab", "ac", "b", "bd", "ef"], 2) 

self.assertEqual([2, 2], rdd.histogram(["a", "b", "c"])[1]) 

self.assertEqual((["ab", "ef"], [5]), rdd.histogram(1)) 

self.assertRaises(TypeError, lambda: rdd.histogram(2)) 

 

def test_repartitionAndSortWithinPartitions_asc(self): 

rdd = self.sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 3)], 2) 

 

repartitioned = rdd.repartitionAndSortWithinPartitions(2, lambda key: key % 2, True) 

partitions = repartitioned.glom().collect() 

self.assertEqual(partitions[0], [(0, 5), (0, 8), (2, 6)]) 

self.assertEqual(partitions[1], [(1, 3), (3, 8), (3, 8)]) 

 

def test_repartitionAndSortWithinPartitions_desc(self): 

rdd = self.sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 3)], 2) 

 

repartitioned = rdd.repartitionAndSortWithinPartitions(2, lambda key: key % 2, False) 

partitions = repartitioned.glom().collect() 

self.assertEqual(partitions[0], [(2, 6), (0, 5), (0, 8)]) 

self.assertEqual(partitions[1], [(3, 8), (3, 8), (1, 3)]) 

 

def test_repartition_no_skewed(self): 

num_partitions = 20 

a = self.sc.parallelize(range(int(1000)), 2) 

l = a.repartition(num_partitions).glom().map(len).collect() 

zeros = len([x for x in l if x == 0]) 

self.assertTrue(zeros == 0) 

l = a.coalesce(num_partitions, True).glom().map(len).collect() 

zeros = len([x for x in l if x == 0]) 

self.assertTrue(zeros == 0) 

 

def test_repartition_on_textfile(self): 

path = os.path.join(SPARK_HOME, "python/test_support/hello/hello.txt") 

rdd = self.sc.textFile(path) 

result = rdd.repartition(1).collect() 

self.assertEqual(u"Hello World!", result[0]) 

 

def test_distinct(self): 

rdd = self.sc.parallelize((1, 2, 3)*10, 10) 

self.assertEqual(rdd.getNumPartitions(), 10) 

self.assertEqual(rdd.distinct().count(), 3) 

result = rdd.distinct(5) 

self.assertEqual(result.getNumPartitions(), 5) 

self.assertEqual(result.count(), 3) 

 

def test_external_group_by_key(self): 

self.sc._conf.set("spark.python.worker.memory", "1m") 

N = 2000001 

kv = self.sc.parallelize(range(N)).map(lambda x: (x % 3, x)) 

gkv = kv.groupByKey().cache() 

self.assertEqual(3, gkv.count()) 

filtered = gkv.filter(lambda kv: kv[0] == 1) 

self.assertEqual(1, filtered.count()) 

self.assertEqual([(1, N // 3)], filtered.mapValues(len).collect()) 

self.assertEqual([(N // 3, N // 3)], 

filtered.values().map(lambda x: (len(x), len(list(x)))).collect()) 

result = filtered.collect()[0][1] 

self.assertEqual(N // 3, len(result)) 

self.assertTrue(isinstance(result.data, shuffle.ExternalListOfList)) 

 

def test_sort_on_empty_rdd(self): 

self.assertEqual([], self.sc.parallelize(zip([], [])).sortByKey().collect()) 

 

def test_sample(self): 

rdd = self.sc.parallelize(range(0, 100), 4) 

wo = rdd.sample(False, 0.1, 2).collect() 

wo_dup = rdd.sample(False, 0.1, 2).collect() 

self.assertSetEqual(set(wo), set(wo_dup)) 

wr = rdd.sample(True, 0.2, 5).collect() 

wr_dup = rdd.sample(True, 0.2, 5).collect() 

self.assertSetEqual(set(wr), set(wr_dup)) 

wo_s10 = rdd.sample(False, 0.3, 10).collect() 

wo_s20 = rdd.sample(False, 0.3, 20).collect() 

self.assertNotEqual(set(wo_s10), set(wo_s20)) 

wr_s11 = rdd.sample(True, 0.4, 11).collect() 

wr_s21 = rdd.sample(True, 0.4, 21).collect() 

self.assertNotEqual(set(wr_s11), set(wr_s21)) 

 

def test_null_in_rdd(self): 

jrdd = self.sc._jvm.PythonUtils.generateRDDWithNull(self.sc._jsc) 

rdd = RDD(jrdd, self.sc, UTF8Deserializer()) 

self.assertEqual([u"a", None, u"b"], rdd.collect()) 

rdd = RDD(jrdd, self.sc, NoOpSerializer()) 

self.assertEqual([b"a", None, b"b"], rdd.collect()) 

 

def test_multiple_python_java_RDD_conversions(self): 

# Regression test for SPARK-5361 

data = [ 

(u'1', {u'director': u'David Lean'}), 

(u'2', {u'director': u'Andrew Dominik'}) 

] 

data_rdd = self.sc.parallelize(data) 

data_java_rdd = data_rdd._to_java_object_rdd() 

data_python_rdd = self.sc._jvm.SerDeUtil.javaToPython(data_java_rdd) 

converted_rdd = RDD(data_python_rdd, self.sc) 

self.assertEqual(2, converted_rdd.count()) 

 

# conversion between python and java RDD threw exceptions 

data_java_rdd = converted_rdd._to_java_object_rdd() 

data_python_rdd = self.sc._jvm.SerDeUtil.javaToPython(data_java_rdd) 

converted_rdd = RDD(data_python_rdd, self.sc) 

self.assertEqual(2, converted_rdd.count()) 

 

# Regression test for SPARK-6294 

def test_take_on_jrdd(self): 

rdd = self.sc.parallelize(range(1 << 20)).map(lambda x: str(x)) 

rdd._jrdd.first() 

 

def test_sortByKey_uses_all_partitions_not_only_first_and_last(self): 

# Regression test for SPARK-5969 

seq = [(i * 59 % 101, i) for i in range(101)] # unsorted sequence 

rdd = self.sc.parallelize(seq) 

for ascending in [True, False]: 

sort = rdd.sortByKey(ascending=ascending, numPartitions=5) 

self.assertEqual(sort.collect(), sorted(seq, reverse=not ascending)) 

sizes = sort.glom().map(len).collect() 

for size in sizes: 

self.assertGreater(size, 0) 

 

def test_pipe_functions(self): 

data = ['1', '2', '3'] 

rdd = self.sc.parallelize(data) 

with QuietTest(self.sc): 

self.assertEqual([], rdd.pipe('java').collect()) 

self.assertRaises(Py4JJavaError, rdd.pipe('java', checkCode=True).collect) 

result = rdd.pipe('cat').collect() 

result.sort() 

for x, y in zip(data, result): 

self.assertEqual(x, y) 

self.assertRaises(Py4JJavaError, rdd.pipe('grep 4', checkCode=True).collect) 

self.assertEqual([], rdd.pipe('grep 4').collect()) 

 

def test_pipe_unicode(self): 

# Regression test for SPARK-20947 

data = [u'\u6d4b\u8bd5', '1'] 

rdd = self.sc.parallelize(data) 

result = rdd.pipe('cat').collect() 

self.assertEqual(data, result) 

 

def test_stopiteration_in_user_code(self): 

 

def stopit(*x): 

raise StopIteration() 

 

seq_rdd = self.sc.parallelize(range(10)) 

keyed_rdd = self.sc.parallelize((x % 2, x) for x in range(10)) 

msg = "Caught StopIteration thrown from user's code; failing the task" 

 

self.assertRaisesRegex(Py4JJavaError, msg, seq_rdd.map(stopit).collect) 

self.assertRaisesRegex(Py4JJavaError, msg, seq_rdd.filter(stopit).collect) 

self.assertRaisesRegex(Py4JJavaError, msg, seq_rdd.foreach, stopit) 

self.assertRaisesRegex(Py4JJavaError, msg, seq_rdd.reduce, stopit) 

self.assertRaisesRegex(Py4JJavaError, msg, seq_rdd.fold, 0, stopit) 

self.assertRaisesRegex(Py4JJavaError, msg, seq_rdd.foreach, stopit) 

self.assertRaisesRegex(Py4JJavaError, msg, 

seq_rdd.cartesian(seq_rdd).flatMap(stopit).collect) 

 

# these methods call the user function both in the driver and in the executor 

# the exception raised is different according to where the StopIteration happens 

# RuntimeError is raised if in the driver 

# Py4JJavaError is raised if in the executor (wraps the RuntimeError raised in the worker) 

self.assertRaisesRegex((Py4JJavaError, RuntimeError), msg, 

keyed_rdd.reduceByKeyLocally, stopit) 

751 ↛ exitline 752 didn't finish the lambda on line 752 self.assertRaisesRegex((Py4JJavaError, RuntimeError), msg, 

seq_rdd.aggregate, 0, stopit, lambda *x: 1) 

self.assertRaisesRegex((Py4JJavaError, RuntimeError), msg, 

seq_rdd.aggregate, 0, lambda *x: 1, stopit) 

 

def test_overwritten_global_func(self): 

# Regression test for SPARK-27000 

global global_func 

self.assertEqual(self.sc.parallelize([1]).map(lambda _: global_func()).first(), "Hi") 

global_func = lambda: "Yeah" 

self.assertEqual(self.sc.parallelize([1]).map(lambda _: global_func()).first(), "Yeah") 

 

def test_to_local_iterator_failure(self): 

# SPARK-27548 toLocalIterator task failure not propagated to Python driver 

 

def fail(_): 

raise RuntimeError("local iterator error") 

 

rdd = self.sc.range(10).map(fail) 

 

with self.assertRaisesRegex(Exception, "local iterator error"): 

772 ↛ 773line 772 didn't jump to line 773, because the loop on line 772 never started for _ in rdd.toLocalIterator(): 

pass 

 

def test_to_local_iterator_collects_single_partition(self): 

# Test that partitions are not computed until requested by iteration 

 

def fail_last(x): 

779 ↛ 780line 779 didn't jump to line 780, because the condition on line 779 was never true if x == 9: 

raise RuntimeError("This should not be hit") 

return x 

 

rdd = self.sc.range(12, numSlices=4).map(fail_last) 

it = rdd.toLocalIterator() 

 

# Only consume first 4 elements from partitions 1 and 2, this should not collect the last 

# partition which would trigger the error 

for i in range(4): 

self.assertEqual(i, next(it)) 

 

def test_resourceprofile(self): 

rp_builder = ResourceProfileBuilder() 

ereqs = ExecutorResourceRequests().cores(2).memory("6g").memoryOverhead("1g") 

ereqs.pysparkMemory("2g").resource("gpu", 2, "testGpus", "nvidia.com") 

treqs = TaskResourceRequests().cpus(2).resource("gpu", 2) 

 

def assert_request_contents(exec_reqs, task_reqs): 

self.assertEqual(len(exec_reqs), 5) 

self.assertEqual(exec_reqs["cores"].amount, 2) 

self.assertEqual(exec_reqs["memory"].amount, 6144) 

self.assertEqual(exec_reqs["memoryOverhead"].amount, 1024) 

self.assertEqual(exec_reqs["pyspark.memory"].amount, 2048) 

self.assertEqual(exec_reqs["gpu"].amount, 2) 

self.assertEqual(exec_reqs["gpu"].discoveryScript, "testGpus") 

self.assertEqual(exec_reqs["gpu"].resourceName, "gpu") 

self.assertEqual(exec_reqs["gpu"].vendor, "nvidia.com") 

self.assertEqual(len(task_reqs), 2) 

self.assertEqual(task_reqs["cpus"].amount, 2.0) 

self.assertEqual(task_reqs["gpu"].amount, 2.0) 

 

assert_request_contents(ereqs.requests, treqs.requests) 

rp = rp_builder.require(ereqs).require(treqs).build 

assert_request_contents(rp.executorResources, rp.taskResources) 

rdd = self.sc.parallelize(range(10)).withResources(rp) 

return_rp = rdd.getResourceProfile() 

assert_request_contents(return_rp.executorResources, return_rp.taskResources) 

rddWithoutRp = self.sc.parallelize(range(10)) 

self.assertEqual(rddWithoutRp.getResourceProfile(), None) 

 

def test_multiple_group_jobs(self): 

import threading 

group_a = "job_ids_to_cancel" 

group_b = "job_ids_to_run" 

 

threads = [] 

thread_ids = range(4) 

thread_ids_to_cancel = [i for i in thread_ids if i % 2 == 0] 

thread_ids_to_run = [i for i in thread_ids if i % 2 != 0] 

 

# A list which records whether job is cancelled. 

# The index of the array is the thread index which job run in. 

is_job_cancelled = [False for _ in thread_ids] 

 

def run_job(job_group, index): 

""" 

Executes a job with the group ``job_group``. Each job waits for 3 seconds 

and then exits. 

""" 

try: 

self.sc.parallelize([15]).map(lambda x: time.sleep(x)) \ 

.collectWithJobGroup(job_group, "test rdd collect with setting job group") 

is_job_cancelled[index] = False 

except Exception: 

# Assume that exception means job cancellation. 

is_job_cancelled[index] = True 

 

# Test if job succeeded when not cancelled. 

run_job(group_a, 0) 

self.assertFalse(is_job_cancelled[0]) 

 

# Run jobs 

for i in thread_ids_to_cancel: 

t = threading.Thread(target=run_job, args=(group_a, i)) 

t.start() 

threads.append(t) 

 

for i in thread_ids_to_run: 

t = threading.Thread(target=run_job, args=(group_b, i)) 

t.start() 

threads.append(t) 

 

# Wait to make sure all jobs are executed. 

time.sleep(3) 

# And then, cancel one job group. 

self.sc.cancelJobGroup(group_a) 

 

# Wait until all threads launching jobs are finished. 

for t in threads: 

t.join() 

 

for i in thread_ids_to_cancel: 

self.assertTrue( 

is_job_cancelled[i], 

"Thread {i}: Job in group A was not cancelled.".format(i=i)) 

 

for i in thread_ids_to_run: 

self.assertFalse( 

is_job_cancelled[i], 

"Thread {i}: Job in group B did not succeeded.".format(i=i)) 

 

 

if __name__ == "__main__": 

import unittest 

from pyspark.tests.test_rdd import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)