#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import shutil
import tempfile
import time
from pyspark.sql import Row
from pyspark.sql.functions import lit
from pyspark.sql.types import StructType, StructField, DecimalType, BinaryType
from pyspark.testing.sqlutils import ReusedSQLTestCase, UTCOffsetTimezone
class SerdeTests(ReusedSQLTestCase):
def test_serialize_nested_array_and_map(self):
d = [Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")})]
rdd = self.sc.parallelize(d)
df = self.spark.createDataFrame(rdd)
row = df.head()
self.assertEqual(1, len(row.l))
self.assertEqual(1, row.l[0].a)
self.assertEqual("2", row.d["key"].d)
l = df.rdd.map(lambda x: x.l).first()
self.assertEqual(1, len(l))
self.assertEqual('s', l[0].b)
d = df.rdd.map(lambda x: x.d).first()
self.assertEqual(1, len(d))
self.assertEqual(1.0, d["key"].c)
row = df.rdd.map(lambda x: x.d["key"]).first()
self.assertEqual(1.0, row.c)
self.assertEqual("2", row.d)
def test_select_null_literal(self):
df = self.spark.sql("select null as col")
self.assertEqual(Row(col=None), df.first())
def test_struct_in_map(self):
d = [Row(m={Row(i=1): Row(s="")})]
df = self.sc.parallelize(d).toDF()
k, v = list(df.head().m.items())[0]
self.assertEqual(1, k.i)
self.assertEqual("", v.s)
def test_filter_with_datetime(self):
time = datetime.datetime(2015, 4, 17, 23, 1, 2, 3000)
date = time.date()
row = Row(date=date, time=time)
df = self.spark.createDataFrame([row])
self.assertEqual(1, df.filter(df.date == date).count())
self.assertEqual(1, df.filter(df.time == time).count())
self.assertEqual(0, df.filter(df.date > date).count())
self.assertEqual(0, df.filter(df.time > time).count())
def test_filter_with_datetime_timezone(self):
dt1 = datetime.datetime(2015, 4, 17, 23, 1, 2, 3000, tzinfo=UTCOffsetTimezone(0))
dt2 = datetime.datetime(2015, 4, 17, 23, 1, 2, 3000, tzinfo=UTCOffsetTimezone(1))
row = Row(date=dt1)
df = self.spark.createDataFrame([row])
self.assertEqual(0, df.filter(df.date == dt2).count())
self.assertEqual(1, df.filter(df.date > dt2).count())
self.assertEqual(0, df.filter(df.date < dt2).count())
def test_time_with_timezone(self):
day = datetime.date.today()
now = datetime.datetime.now()
ts = time.mktime(now.timetuple())
# class in __main__ is not serializable
from pyspark.testing.sqlutils import UTCOffsetTimezone
utc = UTCOffsetTimezone()
utcnow = datetime.datetime.utcfromtimestamp(ts) # without microseconds
# add microseconds to utcnow (keeping year,month,day,hour,minute,second)
utcnow = datetime.datetime(*(utcnow.timetuple()[:6] + (now.microsecond, utc)))
df = self.spark.createDataFrame([(day, now, utcnow)])
day1, now1, utcnow1 = df.first()
self.assertEqual(day1, day)
self.assertEqual(now, now1)
self.assertEqual(now, utcnow1)
# regression test for SPARK-19561
def test_datetime_at_epoch(self):
epoch = datetime.datetime.fromtimestamp(0)
df = self.spark.createDataFrame([Row(date=epoch)])
first = df.select('date', lit(epoch).alias('lit_date')).first()
self.assertEqual(first['date'], epoch)
self.assertEqual(first['lit_date'], epoch)
def test_decimal(self):
from decimal import Decimal
schema = StructType([StructField("decimal", DecimalType(10, 5))])
df = self.spark.createDataFrame([(Decimal("3.14159"),)], schema)
row = df.select(df.decimal + 1).first()
self.assertEqual(row[0], Decimal("4.14159"))
tmpPath = tempfile.mkdtemp()
shutil.rmtree(tmpPath)
df.write.parquet(tmpPath)
df2 = self.spark.read.parquet(tmpPath)
row = df2.first()
self.assertEqual(row[0], Decimal("3.14159"))
def test_BinaryType_serialization(self):
# Pyrolite version <= 4.9 could not serialize BinaryType with Python3 SPARK-17808
# The empty bytearray is test for SPARK-21534.
schema = StructType([StructField('mybytes', BinaryType())])
data = [[bytearray(b'here is my data')],
[bytearray(b'and here is some more')],
[bytearray(b'')]]
df = self.spark.createDataFrame(data, schema=schema)
df.collect()
def test_int_array_serialization(self):
# Note that this test seems dependent on parallelism.
data = self.spark.sparkContext.parallelize([[1, 2, 3, 4]] * 100, numSlices=12)
df = self.spark.createDataFrame(data, "array<integer>")
self.assertEqual(len(list(filter(lambda r: None in r.value, df.collect()))), 0)
def test_bytes_as_binary_type(self):
df = self.spark.createDataFrame([[b"abcd"]], "col binary")
self.assertEqual(df.first().col, bytearray(b'abcd'))
if __name__ == "__main__":
import unittest
from pyspark.sql.tests.test_serde import * # noqa: F401
try:
import xmlrunner # type: ignore[import]
testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)
|