Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import unittest 

 

from pyspark.sql.functions import udf, pandas_udf, PandasUDFType 

from pyspark.sql.types import DoubleType, StructType, StructField, LongType 

from pyspark.sql.utils import ParseException, PythonException 

from pyspark.rdd import PythonEvalType 

from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ 

pandas_requirement_message, pyarrow_requirement_message 

from pyspark.testing.utils import QuietTest 

 

 

@unittest.skipIf( 

not have_pandas or not have_pyarrow, 

pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] 

class PandasUDFTests(ReusedSQLTestCase): 

 

def test_pandas_udf_basic(self): 

udf = pandas_udf(lambda x: x, DoubleType()) 

self.assertEqual(udf.returnType, DoubleType()) 

self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) 

 

udf = pandas_udf(lambda x: x, DoubleType(), PandasUDFType.SCALAR) 

self.assertEqual(udf.returnType, DoubleType()) 

self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) 

 

udf = pandas_udf(lambda x: x, 'double', PandasUDFType.SCALAR) 

self.assertEqual(udf.returnType, DoubleType()) 

self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) 

 

udf = pandas_udf(lambda x: x, StructType([StructField("v", DoubleType())]), 

PandasUDFType.GROUPED_MAP) 

self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) 

self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

udf = pandas_udf(lambda x: x, 'v double', PandasUDFType.GROUPED_MAP) 

self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) 

self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

udf = pandas_udf(lambda x: x, 'v double', 

functionType=PandasUDFType.GROUPED_MAP) 

self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) 

self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

udf = pandas_udf(lambda x: x, returnType='v double', 

functionType=PandasUDFType.GROUPED_MAP) 

self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) 

self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

def test_pandas_udf_decorator(self): 

@pandas_udf(DoubleType()) 

def foo(x): 

return x 

self.assertEqual(foo.returnType, DoubleType()) 

self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) 

 

@pandas_udf(returnType=DoubleType()) 

def foo(x): 

return x 

self.assertEqual(foo.returnType, DoubleType()) 

self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) 

 

schema = StructType([StructField("v", DoubleType())]) 

 

@pandas_udf(schema, PandasUDFType.GROUPED_MAP) 

def foo(x): 

return x 

self.assertEqual(foo.returnType, schema) 

self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

@pandas_udf('v double', PandasUDFType.GROUPED_MAP) 

def foo(x): 

return x 

self.assertEqual(foo.returnType, schema) 

self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP) 

def foo(x): 

return x 

self.assertEqual(foo.returnType, schema) 

self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

@pandas_udf(returnType='double', functionType=PandasUDFType.SCALAR) 

def foo(x): 

return x 

self.assertEqual(foo.returnType, DoubleType()) 

self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) 

 

@pandas_udf(returnType=schema, functionType=PandasUDFType.GROUPED_MAP) 

def foo(x): 

return x 

self.assertEqual(foo.returnType, schema) 

self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) 

 

def test_udf_wrong_arg(self): 

with QuietTest(self.sc): 

with self.assertRaises(ParseException): 

@pandas_udf('blah') 

def foo(x): 

return x 

with self.assertRaisesRegex(ValueError, 'Invalid return type.*None'): 

@pandas_udf(functionType=PandasUDFType.SCALAR) 

def foo(x): 

return x 

with self.assertRaisesRegex(ValueError, 'Invalid function'): 

@pandas_udf('double', 100) 

def foo(x): 

return x 

 

with self.assertRaisesRegex(ValueError, '0-arg pandas_udfs.*not.*supported'): 

pandas_udf(lambda: 1, LongType(), PandasUDFType.SCALAR) 

with self.assertRaisesRegex(ValueError, '0-arg pandas_udfs.*not.*supported'): 

@pandas_udf(LongType(), PandasUDFType.SCALAR) 

def zero_with_type(): 

return 1 

 

with self.assertRaisesRegex(TypeError, 'Invalid return type'): 

@pandas_udf(returnType=PandasUDFType.GROUPED_MAP) 

def foo(df): 

return df 

with self.assertRaisesRegex(TypeError, 'Invalid return type'): 

@pandas_udf(returnType='double', functionType=PandasUDFType.GROUPED_MAP) 

def foo(df): 

return df 

with self.assertRaisesRegex(ValueError, 'Invalid function'): 

@pandas_udf(returnType='k int, v double', functionType=PandasUDFType.GROUPED_MAP) 

def foo(k, v, w): 

return k 

 

def test_stopiteration_in_udf(self): 

def foo(x): 

raise StopIteration() 

 

def foofoo(x, y): 

raise StopIteration() 

 

exc_message = "Caught StopIteration thrown from user's code; failing the task" 

df = self.spark.range(0, 100) 

 

# plain udf (test for SPARK-23754) 

self.assertRaisesRegex( 

PythonException, 

exc_message, 

df.withColumn('v', udf(foo)('id')).collect 

) 

 

# pandas scalar udf 

self.assertRaisesRegex( 

PythonException, 

exc_message, 

df.withColumn( 

'v', pandas_udf(foo, 'double', PandasUDFType.SCALAR)('id') 

).collect 

) 

 

# pandas grouped map 

self.assertRaisesRegex( 

PythonException, 

exc_message, 

df.groupBy('id').apply( 

pandas_udf(foo, df.schema, PandasUDFType.GROUPED_MAP) 

).collect 

) 

 

self.assertRaisesRegex( 

PythonException, 

exc_message, 

df.groupBy('id').apply( 

pandas_udf(foofoo, df.schema, PandasUDFType.GROUPED_MAP) 

).collect 

) 

 

# pandas grouped agg 

self.assertRaisesRegex( 

PythonException, 

exc_message, 

df.groupBy('id').agg( 

pandas_udf(foo, 'double', PandasUDFType.GROUPED_AGG)('id') 

).collect 

) 

 

def test_pandas_udf_detect_unsafe_type_conversion(self): 

import pandas as pd 

import numpy as np 

 

values = [1.0] * 3 

pdf = pd.DataFrame({'A': values}) 

df = self.spark.createDataFrame(pdf).repartition(1) 

 

@pandas_udf(returnType="int") 

def udf(column): 

return pd.Series(np.linspace(0, 1, len(column))) 

 

# Since 0.11.0, PyArrow supports the feature to raise an error for unsafe cast. 

with self.sql_conf({ 

"spark.sql.execution.pandas.convertToArrowArraySafely": True}): 

with self.assertRaisesRegex(Exception, 

"Exception thrown when converting pandas.Series"): 

df.select(['A']).withColumn('udf', udf('A')).collect() 

 

# Disabling Arrow safe type check. 

with self.sql_conf({ 

"spark.sql.execution.pandas.convertToArrowArraySafely": False}): 

df.select(['A']).withColumn('udf', udf('A')).collect() 

 

def test_pandas_udf_arrow_overflow(self): 

import pandas as pd 

 

df = self.spark.range(0, 1) 

 

@pandas_udf(returnType="byte") 

def udf(column): 

return pd.Series([128] * len(column)) 

 

# When enabling safe type check, Arrow 0.11.0+ disallows overflow cast. 

with self.sql_conf({ 

"spark.sql.execution.pandas.convertToArrowArraySafely": True}): 

with self.assertRaisesRegex(Exception, 

"Exception thrown when converting pandas.Series"): 

df.withColumn('udf', udf('id')).collect() 

 

# Disabling safe type check, let Arrow do the cast anyway. 

with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": False}): 

df.withColumn('udf', udf('id')).collect() 

 

 

if __name__ == "__main__": 

from pyspark.sql.tests.test_pandas_udf import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)