Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import unittest 

 

from pyspark.rdd import PythonEvalType 

from pyspark.sql import Row 

from pyspark.sql.functions import array, explode, col, lit, mean, sum, \ 

udf, pandas_udf, PandasUDFType 

from pyspark.sql.types import ArrayType, TimestampType 

from pyspark.sql.utils import AnalysisException 

from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ 

pandas_requirement_message, pyarrow_requirement_message 

from pyspark.testing.utils import QuietTest 

 

 

if have_pandas: 

import pandas as pd 

from pandas.testing import assert_frame_equal 

 

 

@unittest.skipIf( 

not have_pandas or not have_pyarrow, 

pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] 

class GroupedAggPandasUDFTests(ReusedSQLTestCase): 

 

@property 

def data(self): 

return self.spark.range(10).toDF('id') \ 

.withColumn("vs", array([lit(i * 1.0) + col('id') for i in range(20, 30)])) \ 

.withColumn("v", explode(col('vs'))) \ 

.drop('vs') \ 

.withColumn('w', lit(1.0)) 

 

@property 

def python_plus_one(self): 

@udf('double') 

def plus_one(v): 

assert isinstance(v, (int, float)) 

return float(v + 1) 

return plus_one 

 

@property 

def pandas_scalar_plus_two(self): 

@pandas_udf('double', PandasUDFType.SCALAR) 

def plus_two(v): 

assert isinstance(v, pd.Series) 

return v + 2 

return plus_two 

 

@property 

def pandas_agg_mean_udf(self): 

@pandas_udf('double', PandasUDFType.GROUPED_AGG) 

def avg(v): 

return v.mean() 

return avg 

 

@property 

def pandas_agg_sum_udf(self): 

@pandas_udf('double', PandasUDFType.GROUPED_AGG) 

def sum(v): 

return v.sum() 

return sum 

 

@property 

def pandas_agg_weighted_mean_udf(self): 

import numpy as np 

 

@pandas_udf('double', PandasUDFType.GROUPED_AGG) 

def weighted_mean(v, w): 

return np.average(v, weights=w) 

return weighted_mean 

 

def test_manual(self): 

df = self.data 

sum_udf = self.pandas_agg_sum_udf 

mean_udf = self.pandas_agg_mean_udf 

mean_arr_udf = pandas_udf( 

self.pandas_agg_mean_udf.func, 

ArrayType(self.pandas_agg_mean_udf.returnType), 

self.pandas_agg_mean_udf.evalType) 

 

result1 = df.groupby('id').agg( 

sum_udf(df.v), 

mean_udf(df.v), 

mean_arr_udf(array(df.v))).sort('id') 

expected1 = self.spark.createDataFrame( 

[[0, 245.0, 24.5, [24.5]], 

[1, 255.0, 25.5, [25.5]], 

[2, 265.0, 26.5, [26.5]], 

[3, 275.0, 27.5, [27.5]], 

[4, 285.0, 28.5, [28.5]], 

[5, 295.0, 29.5, [29.5]], 

[6, 305.0, 30.5, [30.5]], 

[7, 315.0, 31.5, [31.5]], 

[8, 325.0, 32.5, [32.5]], 

[9, 335.0, 33.5, [33.5]]], 

['id', 'sum(v)', 'avg(v)', 'avg(array(v))']) 

 

assert_frame_equal(expected1.toPandas(), result1.toPandas()) 

 

def test_basic(self): 

df = self.data 

weighted_mean_udf = self.pandas_agg_weighted_mean_udf 

 

# Groupby one column and aggregate one UDF with literal 

result1 = df.groupby('id').agg(weighted_mean_udf(df.v, lit(1.0))).sort('id') 

expected1 = df.groupby('id').agg(mean(df.v).alias('weighted_mean(v, 1.0)')).sort('id') 

assert_frame_equal(expected1.toPandas(), result1.toPandas()) 

 

# Groupby one expression and aggregate one UDF with literal 

result2 = df.groupby((col('id') + 1)).agg(weighted_mean_udf(df.v, lit(1.0)))\ 

.sort(df.id + 1) 

expected2 = df.groupby((col('id') + 1))\ 

.agg(mean(df.v).alias('weighted_mean(v, 1.0)')).sort(df.id + 1) 

assert_frame_equal(expected2.toPandas(), result2.toPandas()) 

 

# Groupby one column and aggregate one UDF without literal 

result3 = df.groupby('id').agg(weighted_mean_udf(df.v, df.w)).sort('id') 

expected3 = df.groupby('id').agg(mean(df.v).alias('weighted_mean(v, w)')).sort('id') 

assert_frame_equal(expected3.toPandas(), result3.toPandas()) 

 

# Groupby one expression and aggregate one UDF without literal 

result4 = df.groupby((col('id') + 1).alias('id'))\ 

.agg(weighted_mean_udf(df.v, df.w))\ 

.sort('id') 

expected4 = df.groupby((col('id') + 1).alias('id'))\ 

.agg(mean(df.v).alias('weighted_mean(v, w)'))\ 

.sort('id') 

assert_frame_equal(expected4.toPandas(), result4.toPandas()) 

 

def test_unsupported_types(self): 

with QuietTest(self.sc): 

with self.assertRaisesRegex(NotImplementedError, 'not supported'): 

pandas_udf( 

lambda x: x, 

ArrayType(ArrayType(TimestampType())), 

PandasUDFType.GROUPED_AGG) 

 

with QuietTest(self.sc): 

with self.assertRaisesRegex(NotImplementedError, 'not supported'): 

@pandas_udf('mean double, std double', PandasUDFType.GROUPED_AGG) 

def mean_and_std_udf(v): 

return v.mean(), v.std() 

 

with QuietTest(self.sc): 

with self.assertRaisesRegex(NotImplementedError, 'not supported'): 

@pandas_udf(ArrayType(TimestampType()), PandasUDFType.GROUPED_AGG) 

def mean_and_std_udf(v): 

return {v.mean(): v.std()} 

 

def test_alias(self): 

df = self.data 

mean_udf = self.pandas_agg_mean_udf 

 

result1 = df.groupby('id').agg(mean_udf(df.v).alias('mean_alias')) 

expected1 = df.groupby('id').agg(mean(df.v).alias('mean_alias')) 

 

assert_frame_equal(expected1.toPandas(), result1.toPandas()) 

 

def test_mixed_sql(self): 

""" 

Test mixing group aggregate pandas UDF with sql expression. 

""" 

df = self.data 

sum_udf = self.pandas_agg_sum_udf 

 

# Mix group aggregate pandas UDF with sql expression 

result1 = (df.groupby('id') 

.agg(sum_udf(df.v) + 1) 

.sort('id')) 

expected1 = (df.groupby('id') 

.agg(sum(df.v) + 1) 

.sort('id')) 

 

# Mix group aggregate pandas UDF with sql expression (order swapped) 

result2 = (df.groupby('id') 

.agg(sum_udf(df.v + 1)) 

.sort('id')) 

 

expected2 = (df.groupby('id') 

.agg(sum(df.v + 1)) 

.sort('id')) 

 

# Wrap group aggregate pandas UDF with two sql expressions 

result3 = (df.groupby('id') 

.agg(sum_udf(df.v + 1) + 2) 

.sort('id')) 

expected3 = (df.groupby('id') 

.agg(sum(df.v + 1) + 2) 

.sort('id')) 

 

assert_frame_equal(expected1.toPandas(), result1.toPandas()) 

assert_frame_equal(expected2.toPandas(), result2.toPandas()) 

assert_frame_equal(expected3.toPandas(), result3.toPandas()) 

 

def test_mixed_udfs(self): 

""" 

Test mixing group aggregate pandas UDF with python UDF and scalar pandas UDF. 

""" 

df = self.data 

plus_one = self.python_plus_one 

plus_two = self.pandas_scalar_plus_two 

sum_udf = self.pandas_agg_sum_udf 

 

# Mix group aggregate pandas UDF and python UDF 

result1 = (df.groupby('id') 

.agg(plus_one(sum_udf(df.v))) 

.sort('id')) 

expected1 = (df.groupby('id') 

.agg(plus_one(sum(df.v))) 

.sort('id')) 

 

# Mix group aggregate pandas UDF and python UDF (order swapped) 

result2 = (df.groupby('id') 

.agg(sum_udf(plus_one(df.v))) 

.sort('id')) 

expected2 = (df.groupby('id') 

.agg(sum(plus_one(df.v))) 

.sort('id')) 

 

# Mix group aggregate pandas UDF and scalar pandas UDF 

result3 = (df.groupby('id') 

.agg(sum_udf(plus_two(df.v))) 

.sort('id')) 

expected3 = (df.groupby('id') 

.agg(sum(plus_two(df.v))) 

.sort('id')) 

 

# Mix group aggregate pandas UDF and scalar pandas UDF (order swapped) 

result4 = (df.groupby('id') 

.agg(plus_two(sum_udf(df.v))) 

.sort('id')) 

expected4 = (df.groupby('id') 

.agg(plus_two(sum(df.v))) 

.sort('id')) 

 

# Wrap group aggregate pandas UDF with two python UDFs and use python UDF in groupby 

result5 = (df.groupby(plus_one(df.id)) 

.agg(plus_one(sum_udf(plus_one(df.v)))) 

.sort('plus_one(id)')) 

expected5 = (df.groupby(plus_one(df.id)) 

.agg(plus_one(sum(plus_one(df.v)))) 

.sort('plus_one(id)')) 

 

# Wrap group aggregate pandas UDF with two scala pandas UDF and user scala pandas UDF in 

# groupby 

result6 = (df.groupby(plus_two(df.id)) 

.agg(plus_two(sum_udf(plus_two(df.v)))) 

.sort('plus_two(id)')) 

expected6 = (df.groupby(plus_two(df.id)) 

.agg(plus_two(sum(plus_two(df.v)))) 

.sort('plus_two(id)')) 

 

assert_frame_equal(expected1.toPandas(), result1.toPandas()) 

assert_frame_equal(expected2.toPandas(), result2.toPandas()) 

assert_frame_equal(expected3.toPandas(), result3.toPandas()) 

assert_frame_equal(expected4.toPandas(), result4.toPandas()) 

assert_frame_equal(expected5.toPandas(), result5.toPandas()) 

assert_frame_equal(expected6.toPandas(), result6.toPandas()) 

 

def test_multiple_udfs(self): 

""" 

Test multiple group aggregate pandas UDFs in one agg function. 

""" 

df = self.data 

mean_udf = self.pandas_agg_mean_udf 

sum_udf = self.pandas_agg_sum_udf 

weighted_mean_udf = self.pandas_agg_weighted_mean_udf 

 

result1 = (df.groupBy('id') 

.agg(mean_udf(df.v), 

sum_udf(df.v), 

weighted_mean_udf(df.v, df.w)) 

.sort('id') 

.toPandas()) 

expected1 = (df.groupBy('id') 

.agg(mean(df.v), 

sum(df.v), 

mean(df.v).alias('weighted_mean(v, w)')) 

.sort('id') 

.toPandas()) 

 

assert_frame_equal(expected1, result1) 

 

def test_complex_groupby(self): 

df = self.data 

sum_udf = self.pandas_agg_sum_udf 

plus_one = self.python_plus_one 

plus_two = self.pandas_scalar_plus_two 

 

# groupby one expression 

result1 = df.groupby(df.v % 2).agg(sum_udf(df.v)) 

expected1 = df.groupby(df.v % 2).agg(sum(df.v)) 

 

# empty groupby 

result2 = df.groupby().agg(sum_udf(df.v)) 

expected2 = df.groupby().agg(sum(df.v)) 

 

# groupby one column and one sql expression 

result3 = df.groupby(df.id, df.v % 2).agg(sum_udf(df.v)).orderBy(df.id, df.v % 2) 

expected3 = df.groupby(df.id, df.v % 2).agg(sum(df.v)).orderBy(df.id, df.v % 2) 

 

# groupby one python UDF 

result4 = df.groupby(plus_one(df.id)).agg(sum_udf(df.v)).sort('plus_one(id)') 

expected4 = df.groupby(plus_one(df.id)).agg(sum(df.v)).sort('plus_one(id)') 

 

# groupby one scalar pandas UDF 

result5 = df.groupby(plus_two(df.id)).agg(sum_udf(df.v)).sort('sum(v)') 

expected5 = df.groupby(plus_two(df.id)).agg(sum(df.v)).sort('sum(v)') 

 

# groupby one expression and one python UDF 

result6 = (df.groupby(df.v % 2, plus_one(df.id)) 

.agg(sum_udf(df.v)).sort(['(v % 2)', 'plus_one(id)'])) 

expected6 = (df.groupby(df.v % 2, plus_one(df.id)) 

.agg(sum(df.v)).sort(['(v % 2)', 'plus_one(id)'])) 

 

# groupby one expression and one scalar pandas UDF 

result7 = (df.groupby(df.v % 2, plus_two(df.id)) 

.agg(sum_udf(df.v)).sort(['sum(v)', 'plus_two(id)'])) 

expected7 = (df.groupby(df.v % 2, plus_two(df.id)) 

.agg(sum(df.v)).sort(['sum(v)', 'plus_two(id)'])) 

 

assert_frame_equal(expected1.toPandas(), result1.toPandas()) 

assert_frame_equal(expected2.toPandas(), result2.toPandas()) 

assert_frame_equal(expected3.toPandas(), result3.toPandas()) 

assert_frame_equal(expected4.toPandas(), result4.toPandas()) 

assert_frame_equal(expected5.toPandas(), result5.toPandas()) 

assert_frame_equal(expected6.toPandas(), result6.toPandas()) 

assert_frame_equal(expected7.toPandas(), result7.toPandas()) 

 

def test_complex_expressions(self): 

df = self.data 

plus_one = self.python_plus_one 

plus_two = self.pandas_scalar_plus_two 

sum_udf = self.pandas_agg_sum_udf 

 

# Test complex expressions with sql expression, python UDF and 

# group aggregate pandas UDF 

result1 = (df.withColumn('v1', plus_one(df.v)) 

.withColumn('v2', df.v + 2) 

.groupby(df.id, df.v % 2) 

.agg(sum_udf(col('v')), 

sum_udf(col('v1') + 3), 

sum_udf(col('v2')) + 5, 

plus_one(sum_udf(col('v1'))), 

sum_udf(plus_one(col('v2')))) 

.sort(['id', '(v % 2)']) 

.toPandas().sort_values(by=['id', '(v % 2)'])) 

 

expected1 = (df.withColumn('v1', df.v + 1) 

.withColumn('v2', df.v + 2) 

.groupby(df.id, df.v % 2) 

.agg(sum(col('v')), 

sum(col('v1') + 3), 

sum(col('v2')) + 5, 

plus_one(sum(col('v1'))), 

sum(plus_one(col('v2')))) 

.sort(['id', '(v % 2)']) 

.toPandas().sort_values(by=['id', '(v % 2)'])) 

 

# Test complex expressions with sql expression, scala pandas UDF and 

# group aggregate pandas UDF 

result2 = (df.withColumn('v1', plus_one(df.v)) 

.withColumn('v2', df.v + 2) 

.groupby(df.id, df.v % 2) 

.agg(sum_udf(col('v')), 

sum_udf(col('v1') + 3), 

sum_udf(col('v2')) + 5, 

plus_two(sum_udf(col('v1'))), 

sum_udf(plus_two(col('v2')))) 

.sort(['id', '(v % 2)']) 

.toPandas().sort_values(by=['id', '(v % 2)'])) 

 

expected2 = (df.withColumn('v1', df.v + 1) 

.withColumn('v2', df.v + 2) 

.groupby(df.id, df.v % 2) 

.agg(sum(col('v')), 

sum(col('v1') + 3), 

sum(col('v2')) + 5, 

plus_two(sum(col('v1'))), 

sum(plus_two(col('v2')))) 

.sort(['id', '(v % 2)']) 

.toPandas().sort_values(by=['id', '(v % 2)'])) 

 

# Test sequential groupby aggregate 

result3 = (df.groupby('id') 

.agg(sum_udf(df.v).alias('v')) 

.groupby('id') 

.agg(sum_udf(col('v'))) 

.sort('id') 

.toPandas()) 

 

expected3 = (df.groupby('id') 

.agg(sum(df.v).alias('v')) 

.groupby('id') 

.agg(sum(col('v'))) 

.sort('id') 

.toPandas()) 

 

assert_frame_equal(expected1, result1) 

assert_frame_equal(expected2, result2) 

assert_frame_equal(expected3, result3) 

 

def test_retain_group_columns(self): 

with self.sql_conf({"spark.sql.retainGroupColumns": False}): 

df = self.data 

sum_udf = self.pandas_agg_sum_udf 

 

result1 = df.groupby(df.id).agg(sum_udf(df.v)) 

expected1 = df.groupby(df.id).agg(sum(df.v)) 

assert_frame_equal(expected1.toPandas(), result1.toPandas()) 

 

def test_array_type(self): 

df = self.data 

 

array_udf = pandas_udf(lambda x: [1.0, 2.0], 'array<double>', PandasUDFType.GROUPED_AGG) 

result1 = df.groupby('id').agg(array_udf(df['v']).alias('v2')) 

self.assertEqual(result1.first()['v2'], [1.0, 2.0]) 

 

def test_invalid_args(self): 

df = self.data 

plus_one = self.python_plus_one 

mean_udf = self.pandas_agg_mean_udf 

 

with QuietTest(self.sc): 

with self.assertRaisesRegex( 

AnalysisException, 

'nor.*aggregate function'): 

df.groupby(df.id).agg(plus_one(df.v)).collect() 

 

with QuietTest(self.sc): 

with self.assertRaisesRegex( 

AnalysisException, 

'aggregate function.*argument.*aggregate function'): 

df.groupby(df.id).agg(mean_udf(mean_udf(df.v))).collect() 

 

with QuietTest(self.sc): 

with self.assertRaisesRegex( 

AnalysisException, 

'mixture.*aggregate function.*group aggregate pandas UDF'): 

df.groupby(df.id).agg(mean_udf(df.v), mean(df.v)).collect() 

 

def test_register_vectorized_udf_basic(self): 

sum_pandas_udf = pandas_udf( 

lambda v: v.sum(), "integer", PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) 

 

self.assertEqual(sum_pandas_udf.evalType, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) 

group_agg_pandas_udf = self.spark.udf.register("sum_pandas_udf", sum_pandas_udf) 

self.assertEqual(group_agg_pandas_udf.evalType, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) 

q = "SELECT sum_pandas_udf(v1) FROM VALUES (3, 0), (2, 0), (1, 1) tbl(v1, v2) GROUP BY v2" 

actual = sorted(map(lambda r: r[0], self.spark.sql(q).collect())) 

expected = [1, 5] 

self.assertEqual(actual, expected) 

 

def test_grouped_with_empty_partition(self): 

data = [Row(id=1, x=2), Row(id=1, x=3), Row(id=2, x=4)] 

expected = [Row(id=1, sum=5), Row(id=2, x=4)] 

num_parts = len(data) + 1 

df = self.spark.createDataFrame(self.sc.parallelize(data, numSlices=num_parts)) 

 

f = pandas_udf(lambda x: x.sum(), 

'int', PandasUDFType.GROUPED_AGG) 

 

result = df.groupBy('id').agg(f(df['x']).alias('sum')).collect() 

self.assertEqual(result, expected) 

 

def test_grouped_without_group_by_clause(self): 

@pandas_udf('double', PandasUDFType.GROUPED_AGG) 

def max_udf(v): 

return v.max() 

 

df = self.spark.range(0, 100) 

self.spark.udf.register('max_udf', max_udf) 

 

with self.tempView("table"): 

df.createTempView('table') 

 

agg1 = df.agg(max_udf(df['id'])) 

agg2 = self.spark.sql("select max_udf(id) from table") 

assert_frame_equal(agg1.toPandas(), agg2.toPandas()) 

 

def test_no_predicate_pushdown_through(self): 

# SPARK-30921: We should not pushdown predicates of PythonUDFs through Aggregate. 

import numpy as np 

 

@pandas_udf('float', PandasUDFType.GROUPED_AGG) 

def mean(x): 

return np.mean(x) 

 

df = self.spark.createDataFrame([ 

Row(id=1, foo=42), Row(id=2, foo=1), Row(id=2, foo=2) 

]) 

 

agg = df.groupBy('id').agg(mean('foo').alias("mean")) 

filtered = agg.filter(agg['mean'] > 40.0) 

 

assert(filtered.collect()[0]["mean"] == 42.0) 

 

 

if __name__ == "__main__": 

from pyspark.sql.tests.test_pandas_udf_grouped_agg import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)