Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import datetime 

import unittest 

 

from collections import OrderedDict 

from decimal import Decimal 

 

from pyspark.sql import Row 

from pyspark.sql.functions import array, explode, col, lit, udf, sum, pandas_udf, PandasUDFType, \ 

window 

from pyspark.sql.types import IntegerType, DoubleType, ArrayType, BinaryType, ByteType, \ 

LongType, DecimalType, ShortType, FloatType, StringType, BooleanType, StructType, \ 

StructField, NullType, TimestampType 

from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ 

pandas_requirement_message, pyarrow_requirement_message 

from pyspark.testing.utils import QuietTest 

 

if have_pandas: 

import pandas as pd 

from pandas.testing import assert_frame_equal 

 

38 ↛ 39line 38 didn't jump to line 39, because the condition on line 38 was never trueif have_pyarrow: 

import pyarrow as pa # noqa: F401 

 

 

@unittest.skipIf( 

not have_pandas or not have_pyarrow, 

pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] 

class GroupedMapInPandasTests(ReusedSQLTestCase): 

 

@property 

def data(self): 

return self.spark.range(10).toDF('id') \ 

.withColumn("vs", array([lit(i) for i in range(20, 30)])) \ 

.withColumn("v", explode(col('vs'))).drop('vs') 

 

def test_supported_types(self): 

 

values = [ 

1, 2, 3, 

4, 5, 1.1, 

2.2, Decimal(1.123), 

[1, 2, 2], True, 'hello', 

bytearray([0x01, 0x02]), 

None 

] 

output_fields = [ 

('id', IntegerType()), ('byte', ByteType()), ('short', ShortType()), 

('int', IntegerType()), ('long', LongType()), ('float', FloatType()), 

('double', DoubleType()), ('decim', DecimalType(10, 3)), 

('array', ArrayType(IntegerType())), ('bool', BooleanType()), ('str', StringType()), 

('bin', BinaryType()), ('null', NullType()) 

] 

 

output_schema = StructType([StructField(*x) for x in output_fields]) 

df = self.spark.createDataFrame([values], schema=output_schema) 

 

# Different forms of group map pandas UDF, results of these are the same 

udf1 = pandas_udf( 

lambda pdf: pdf.assign( 

byte=pdf.byte * 2, 

short=pdf.short * 2, 

int=pdf.int * 2, 

long=pdf.long * 2, 

float=pdf.float * 2, 

double=pdf.double * 2, 

decim=pdf.decim * 2, 

bool=False if pdf.bool else True, 

str=pdf.str + 'there', 

array=pdf.array, 

bin=pdf.bin, 

null=pdf.null 

), 

output_schema, 

PandasUDFType.GROUPED_MAP 

) 

 

udf2 = pandas_udf( 

lambda _, pdf: pdf.assign( 

byte=pdf.byte * 2, 

short=pdf.short * 2, 

int=pdf.int * 2, 

long=pdf.long * 2, 

float=pdf.float * 2, 

double=pdf.double * 2, 

decim=pdf.decim * 2, 

bool=False if pdf.bool else True, 

str=pdf.str + 'there', 

array=pdf.array, 

bin=pdf.bin, 

null=pdf.null 

), 

output_schema, 

PandasUDFType.GROUPED_MAP 

) 

 

udf3 = pandas_udf( 

lambda key, pdf: pdf.assign( 

id=key[0], 

byte=pdf.byte * 2, 

short=pdf.short * 2, 

int=pdf.int * 2, 

long=pdf.long * 2, 

float=pdf.float * 2, 

double=pdf.double * 2, 

decim=pdf.decim * 2, 

bool=False if pdf.bool else True, 

str=pdf.str + 'there', 

array=pdf.array, 

bin=pdf.bin, 

null=pdf.null 

), 

output_schema, 

PandasUDFType.GROUPED_MAP 

) 

 

result1 = df.groupby('id').apply(udf1).sort('id').toPandas() 

expected1 = df.toPandas().groupby('id').apply(udf1.func).reset_index(drop=True) 

 

result2 = df.groupby('id').apply(udf2).sort('id').toPandas() 

expected2 = expected1 

 

result3 = df.groupby('id').apply(udf3).sort('id').toPandas() 

expected3 = expected1 

 

assert_frame_equal(expected1, result1) 

assert_frame_equal(expected2, result2) 

assert_frame_equal(expected3, result3) 

 

def test_array_type_correct(self): 

df = self.data.withColumn("arr", array(col("id"))).repartition(1, "id") 

 

output_schema = StructType( 

[StructField('id', LongType()), 

StructField('v', IntegerType()), 

StructField('arr', ArrayType(LongType()))]) 

 

udf = pandas_udf( 

lambda pdf: pdf, 

output_schema, 

PandasUDFType.GROUPED_MAP 

) 

 

result = df.groupby('id').apply(udf).sort('id').toPandas() 

expected = df.toPandas().groupby('id').apply(udf.func).reset_index(drop=True) 

assert_frame_equal(expected, result) 

 

def test_register_grouped_map_udf(self): 

foo_udf = pandas_udf(lambda x: x, "id long", PandasUDFType.GROUPED_MAP) 

with QuietTest(self.sc): 

with self.assertRaisesRegex( 

ValueError, 

'f.*SQL_BATCHED_UDF.*SQL_SCALAR_PANDAS_UDF.*SQL_GROUPED_AGG_PANDAS_UDF.*'): 

self.spark.catalog.registerFunction("foo_udf", foo_udf) 

 

def test_decorator(self): 

df = self.data 

 

@pandas_udf( 

'id long, v int, v1 double, v2 long', 

PandasUDFType.GROUPED_MAP 

) 

def foo(pdf): 

return pdf.assign(v1=pdf.v * pdf.id * 1.0, v2=pdf.v + pdf.id) 

 

result = df.groupby('id').apply(foo).sort('id').toPandas() 

expected = df.toPandas().groupby('id').apply(foo.func).reset_index(drop=True) 

assert_frame_equal(expected, result) 

 

def test_coerce(self): 

df = self.data 

 

foo = pandas_udf( 

lambda pdf: pdf, 

'id long, v double', 

PandasUDFType.GROUPED_MAP 

) 

 

result = df.groupby('id').apply(foo).sort('id').toPandas() 

expected = df.toPandas().groupby('id').apply(foo.func).reset_index(drop=True) 

expected = expected.assign(v=expected.v.astype('float64')) 

assert_frame_equal(expected, result) 

 

def test_complex_groupby(self): 

df = self.data 

 

@pandas_udf( 

'id long, v int, norm double', 

PandasUDFType.GROUPED_MAP 

) 

def normalize(pdf): 

v = pdf.v 

return pdf.assign(norm=(v - v.mean()) / v.std()) 

 

result = df.groupby(col('id') % 2 == 0).apply(normalize).sort('id', 'v').toPandas() 

pdf = df.toPandas() 

expected = pdf.groupby(pdf['id'] % 2 == 0, as_index=False).apply(normalize.func) 

expected = expected.sort_values(['id', 'v']).reset_index(drop=True) 

expected = expected.assign(norm=expected.norm.astype('float64')) 

assert_frame_equal(expected, result) 

 

def test_empty_groupby(self): 

df = self.data 

 

@pandas_udf( 

'id long, v int, norm double', 

PandasUDFType.GROUPED_MAP 

) 

def normalize(pdf): 

v = pdf.v 

return pdf.assign(norm=(v - v.mean()) / v.std()) 

 

result = df.groupby().apply(normalize).sort('id', 'v').toPandas() 

pdf = df.toPandas() 

expected = normalize.func(pdf) 

expected = expected.sort_values(['id', 'v']).reset_index(drop=True) 

expected = expected.assign(norm=expected.norm.astype('float64')) 

assert_frame_equal(expected, result) 

 

def test_datatype_string(self): 

df = self.data 

 

foo_udf = pandas_udf( 

lambda pdf: pdf.assign(v1=pdf.v * pdf.id * 1.0, v2=pdf.v + pdf.id), 

'id long, v int, v1 double, v2 long', 

PandasUDFType.GROUPED_MAP 

) 

 

result = df.groupby('id').apply(foo_udf).sort('id').toPandas() 

expected = df.toPandas().groupby('id').apply(foo_udf.func).reset_index(drop=True) 

assert_frame_equal(expected, result) 

 

def test_wrong_return_type(self): 

with QuietTest(self.sc): 

with self.assertRaisesRegex( 

NotImplementedError, 

'Invalid return type.*grouped map Pandas UDF.*ArrayType.*TimestampType'): 

pandas_udf( 

lambda pdf: pdf, 

'id long, v array<timestamp>', 

PandasUDFType.GROUPED_MAP) 

 

def test_wrong_args(self): 

df = self.data 

 

with QuietTest(self.sc): 

with self.assertRaisesRegex(ValueError, 'Invalid udf'): 

df.groupby('id').apply(lambda x: x) 

with self.assertRaisesRegex(ValueError, 'Invalid udf'): 

df.groupby('id').apply(udf(lambda x: x, DoubleType())) 

with self.assertRaisesRegex(ValueError, 'Invalid udf'): 

df.groupby('id').apply(sum(df.v)) 

with self.assertRaisesRegex(ValueError, 'Invalid udf'): 

df.groupby('id').apply(df.v + 1) 

with self.assertRaisesRegex(ValueError, 'Invalid function'): 

df.groupby('id').apply( 

pandas_udf(lambda: 1, StructType([StructField("d", DoubleType())]))) 

with self.assertRaisesRegex(ValueError, 'Invalid udf'): 

df.groupby('id').apply(pandas_udf(lambda x, y: x, DoubleType())) 

with self.assertRaisesRegex(ValueError, 'Invalid udf.*GROUPED_MAP'): 

df.groupby('id').apply( 

pandas_udf(lambda x, y: x, DoubleType(), PandasUDFType.SCALAR)) 

 

def test_unsupported_types(self): 

common_err_msg = 'Invalid return type.*grouped map Pandas UDF.*' 

unsupported_types = [ 

StructField('arr_ts', ArrayType(TimestampType())), 

StructField('struct', StructType([StructField('l', LongType())])), 

] 

 

for unsupported_type in unsupported_types: 

schema = StructType([StructField('id', LongType(), True), unsupported_type]) 

with QuietTest(self.sc): 

with self.assertRaisesRegex(NotImplementedError, common_err_msg): 

pandas_udf(lambda x: x, schema, PandasUDFType.GROUPED_MAP) 

 

# Regression test for SPARK-23314 

def test_timestamp_dst(self): 

# Daylight saving time for Los Angeles for 2015 is Sun, Nov 1 at 2:00 am 

dt = [datetime.datetime(2015, 11, 1, 0, 30), 

datetime.datetime(2015, 11, 1, 1, 30), 

datetime.datetime(2015, 11, 1, 2, 30)] 

df = self.spark.createDataFrame(dt, 'timestamp').toDF('time') 

foo_udf = pandas_udf(lambda pdf: pdf, 'time timestamp', PandasUDFType.GROUPED_MAP) 

result = df.groupby('time').apply(foo_udf).sort('time') 

assert_frame_equal(df.toPandas(), result.toPandas()) 

 

def test_udf_with_key(self): 

import numpy as np 

 

df = self.data 

pdf = df.toPandas() 

 

def foo1(key, pdf): 

assert type(key) == tuple 

assert type(key[0]) == np.int64 

 

return pdf.assign(v1=key[0], 

v2=pdf.v * key[0], 

v3=pdf.v * pdf.id, 

v4=pdf.v * pdf.id.mean()) 

 

def foo2(key, pdf): 

assert type(key) == tuple 

assert type(key[0]) == np.int64 

assert type(key[1]) == np.int32 

 

return pdf.assign(v1=key[0], 

v2=key[1], 

v3=pdf.v * key[0], 

v4=pdf.v + key[1]) 

 

def foo3(key, pdf): 

assert type(key) == tuple 

assert len(key) == 0 

return pdf.assign(v1=pdf.v * pdf.id) 

 

# v2 is int because numpy.int64 * pd.Series<int32> results in pd.Series<int32> 

# v3 is long because pd.Series<int64> * pd.Series<int32> results in pd.Series<int64> 

udf1 = pandas_udf( 

foo1, 

'id long, v int, v1 long, v2 int, v3 long, v4 double', 

PandasUDFType.GROUPED_MAP) 

 

udf2 = pandas_udf( 

foo2, 

'id long, v int, v1 long, v2 int, v3 int, v4 int', 

PandasUDFType.GROUPED_MAP) 

 

udf3 = pandas_udf( 

foo3, 

'id long, v int, v1 long', 

PandasUDFType.GROUPED_MAP) 

 

# Test groupby column 

result1 = df.groupby('id').apply(udf1).sort('id', 'v').toPandas() 

expected1 = pdf.groupby('id', as_index=False)\ 

.apply(lambda x: udf1.func((x.id.iloc[0],), x))\ 

.sort_values(['id', 'v']).reset_index(drop=True) 

assert_frame_equal(expected1, result1) 

 

# Test groupby expression 

result2 = df.groupby(df.id % 2).apply(udf1).sort('id', 'v').toPandas() 

expected2 = pdf.groupby(pdf.id % 2, as_index=False)\ 

.apply(lambda x: udf1.func((x.id.iloc[0] % 2,), x))\ 

.sort_values(['id', 'v']).reset_index(drop=True) 

assert_frame_equal(expected2, result2) 

 

# Test complex groupby 

result3 = df.groupby(df.id, df.v % 2).apply(udf2).sort('id', 'v').toPandas() 

expected3 = pdf.groupby([pdf.id, pdf.v % 2], as_index=False)\ 

.apply(lambda x: udf2.func((x.id.iloc[0], (x.v % 2).iloc[0],), x))\ 

.sort_values(['id', 'v']).reset_index(drop=True) 

assert_frame_equal(expected3, result3) 

 

# Test empty groupby 

result4 = df.groupby().apply(udf3).sort('id', 'v').toPandas() 

expected4 = udf3.func((), pdf) 

assert_frame_equal(expected4, result4) 

 

def test_column_order(self): 

 

# Helper function to set column names from a list 

def rename_pdf(pdf, names): 

pdf.rename(columns={old: new for old, new in 

zip(pd_result.columns, names)}, inplace=True) 

 

df = self.data 

grouped_df = df.groupby('id') 

grouped_pdf = df.toPandas().groupby('id', as_index=False) 

 

# Function returns a pdf with required column names, but order could be arbitrary using dict 

def change_col_order(pdf): 

# Constructing a DataFrame from a dict should result in the same order, 

# but use OrderedDict to ensure the pdf column order is different than schema 

return pd.DataFrame.from_dict(OrderedDict([ 

('id', pdf.id), 

('u', pdf.v * 2), 

('v', pdf.v)])) 

 

ordered_udf = pandas_udf( 

change_col_order, 

'id long, v int, u int', 

PandasUDFType.GROUPED_MAP 

) 

 

# The UDF result should assign columns by name from the pdf 

result = grouped_df.apply(ordered_udf).sort('id', 'v')\ 

.select('id', 'u', 'v').toPandas() 

pd_result = grouped_pdf.apply(change_col_order) 

expected = pd_result.sort_values(['id', 'v']).reset_index(drop=True) 

assert_frame_equal(expected, result) 

 

# Function returns a pdf with positional columns, indexed by range 

def range_col_order(pdf): 

# Create a DataFrame with positional columns, fix types to long 

return pd.DataFrame(list(zip(pdf.id, pdf.v * 3, pdf.v)), dtype='int64') 

 

range_udf = pandas_udf( 

range_col_order, 

'id long, u long, v long', 

PandasUDFType.GROUPED_MAP 

) 

 

# The UDF result uses positional columns from the pdf 

result = grouped_df.apply(range_udf).sort('id', 'v') \ 

.select('id', 'u', 'v').toPandas() 

pd_result = grouped_pdf.apply(range_col_order) 

rename_pdf(pd_result, ['id', 'u', 'v']) 

expected = pd_result.sort_values(['id', 'v']).reset_index(drop=True) 

assert_frame_equal(expected, result) 

 

# Function returns a pdf with columns indexed with integers 

def int_index(pdf): 

return pd.DataFrame(OrderedDict([(0, pdf.id), (1, pdf.v * 4), (2, pdf.v)])) 

 

int_index_udf = pandas_udf( 

int_index, 

'id long, u int, v int', 

PandasUDFType.GROUPED_MAP 

) 

 

# The UDF result should assign columns by position of integer index 

result = grouped_df.apply(int_index_udf).sort('id', 'v') \ 

.select('id', 'u', 'v').toPandas() 

pd_result = grouped_pdf.apply(int_index) 

rename_pdf(pd_result, ['id', 'u', 'v']) 

expected = pd_result.sort_values(['id', 'v']).reset_index(drop=True) 

assert_frame_equal(expected, result) 

 

@pandas_udf('id long, v int', PandasUDFType.GROUPED_MAP) 

def column_name_typo(pdf): 

return pd.DataFrame({'iid': pdf.id, 'v': pdf.v}) 

 

@pandas_udf('id long, v decimal', PandasUDFType.GROUPED_MAP) 

def invalid_positional_types(pdf): 

return pd.DataFrame([(1, datetime.date(2020, 10, 5))]) 

 

with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": False}): 

with QuietTest(self.sc): 

with self.assertRaisesRegex(Exception, "KeyError: 'id'"): 

grouped_df.apply(column_name_typo).collect() 

with self.assertRaisesRegex(Exception, "[D|d]ecimal.*got.*date"): 

grouped_df.apply(invalid_positional_types).collect() 

 

def test_positional_assignment_conf(self): 

with self.sql_conf({ 

"spark.sql.legacy.execution.pandas.groupedMap.assignColumnsByName": False}): 

 

@pandas_udf("a string, b float", PandasUDFType.GROUPED_MAP) 

def foo(_): 

return pd.DataFrame([('hi', 1)], columns=['x', 'y']) 

 

df = self.data 

result = df.groupBy('id').apply(foo).select('a', 'b').collect() 

for r in result: 

self.assertEqual(r.a, 'hi') 

self.assertEqual(r.b, 1) 

 

def test_self_join_with_pandas(self): 

@pandas_udf('key long, col string', PandasUDFType.GROUPED_MAP) 

def dummy_pandas_udf(df): 

return df[['key', 'col']] 

 

df = self.spark.createDataFrame([Row(key=1, col='A'), Row(key=1, col='B'), 

Row(key=2, col='C')]) 

df_with_pandas = df.groupBy('key').apply(dummy_pandas_udf) 

 

# this was throwing an AnalysisException before SPARK-24208 

res = df_with_pandas.alias('temp0').join(df_with_pandas.alias('temp1'), 

col('temp0.key') == col('temp1.key')) 

self.assertEqual(res.count(), 5) 

 

def test_mixed_scalar_udfs_followed_by_groupby_apply(self): 

df = self.spark.range(0, 10).toDF('v1') 

df = df.withColumn('v2', udf(lambda x: x + 1, 'int')(df['v1'])) \ 

.withColumn('v3', pandas_udf(lambda x: x + 2, 'int')(df['v1'])) 

 

result = df.groupby() \ 

.apply(pandas_udf(lambda x: pd.DataFrame([x.sum().sum()]), 

'sum int', 

PandasUDFType.GROUPED_MAP)) 

 

self.assertEqual(result.collect()[0]['sum'], 165) 

 

def test_grouped_with_empty_partition(self): 

data = [Row(id=1, x=2), Row(id=1, x=3), Row(id=2, x=4)] 

expected = [Row(id=1, x=5), Row(id=1, x=5), Row(id=2, x=4)] 

num_parts = len(data) + 1 

df = self.spark.createDataFrame(self.sc.parallelize(data, numSlices=num_parts)) 

 

f = pandas_udf(lambda pdf: pdf.assign(x=pdf['x'].sum()), 

'id long, x int', PandasUDFType.GROUPED_MAP) 

 

result = df.groupBy('id').apply(f).collect() 

self.assertEqual(result, expected) 

 

def test_grouped_over_window(self): 

 

data = [(0, 1, "2018-03-10T00:00:00+00:00", [0]), 

(1, 2, "2018-03-11T00:00:00+00:00", [0]), 

(2, 2, "2018-03-12T00:00:00+00:00", [0]), 

(3, 3, "2018-03-15T00:00:00+00:00", [0]), 

(4, 3, "2018-03-16T00:00:00+00:00", [0]), 

(5, 3, "2018-03-17T00:00:00+00:00", [0]), 

(6, 3, "2018-03-21T00:00:00+00:00", [0])] 

 

expected = {0: [0], 

1: [1, 2], 

2: [1, 2], 

3: [3, 4, 5], 

4: [3, 4, 5], 

5: [3, 4, 5], 

6: [6]} 

 

df = self.spark.createDataFrame(data, ['id', 'group', 'ts', 'result']) 

df = df.select(col('id'), col('group'), col('ts').cast('timestamp'), col('result')) 

 

def f(pdf): 

# Assign each result element the ids of the windowed group 

pdf['result'] = [pdf['id']] * len(pdf) 

return pdf 

 

result = df.groupby('group', window('ts', '5 days')).applyInPandas(f, df.schema)\ 

.select('id', 'result').collect() 

for r in result: 

self.assertListEqual(expected[r[0]], r[1]) 

 

def test_grouped_over_window_with_key(self): 

 

data = [(0, 1, "2018-03-10T00:00:00+00:00", [0]), 

(1, 2, "2018-03-11T00:00:00+00:00", [0]), 

(2, 2, "2018-03-12T00:00:00+00:00", [0]), 

(3, 3, "2018-03-15T00:00:00+00:00", [0]), 

(4, 3, "2018-03-16T00:00:00+00:00", [0]), 

(5, 3, "2018-03-17T00:00:00+00:00", [0]), 

(6, 3, "2018-03-21T00:00:00+00:00", [0])] 

 

expected_window = [ 

{'start': datetime.datetime(2018, 3, 10, 0, 0), 

'end': datetime.datetime(2018, 3, 15, 0, 0)}, 

{'start': datetime.datetime(2018, 3, 15, 0, 0), 

'end': datetime.datetime(2018, 3, 20, 0, 0)}, 

{'start': datetime.datetime(2018, 3, 20, 0, 0), 

'end': datetime.datetime(2018, 3, 25, 0, 0)}, 

] 

 

expected_key = {0: (1, expected_window[0]), 

1: (2, expected_window[0]), 

2: (2, expected_window[0]), 

3: (3, expected_window[1]), 

4: (3, expected_window[1]), 

5: (3, expected_window[1]), 

6: (3, expected_window[2])} 

 

# id -> array of group with len of num records in window 

expected = {0: [1], 

1: [2, 2], 

2: [2, 2], 

3: [3, 3, 3], 

4: [3, 3, 3], 

5: [3, 3, 3], 

6: [3]} 

 

df = self.spark.createDataFrame(data, ['id', 'group', 'ts', 'result']) 

df = df.select(col('id'), col('group'), col('ts').cast('timestamp'), col('result')) 

 

def f(key, pdf): 

group = key[0] 

window_range = key[1] 

 

# Make sure the key with group and window values are correct 

for _, i in pdf.id.iteritems(): 

assert expected_key[i][0] == group, "{} != {}".format(expected_key[i][0], group) 

assert expected_key[i][1] == window_range, \ 

"{} != {}".format(expected_key[i][1], window_range) 

 

return pdf.assign(result=[[group] * len(pdf)] * len(pdf)) 

 

result = df.groupby('group', window('ts', '5 days')).applyInPandas(f, df.schema)\ 

.select('id', 'result').collect() 

 

for r in result: 

self.assertListEqual(expected[r[0]], r[1]) 

 

def test_case_insensitive_grouping_column(self): 

# SPARK-31915: case-insensitive grouping column should work. 

def my_pandas_udf(pdf): 

return pdf.assign(score=0.5) 

 

df = self.spark.createDataFrame([[1, 1]], ["column", "score"]) 

row = df.groupby('COLUMN').applyInPandas( 

my_pandas_udf, schema="column integer, score float").first() 

self.assertEqual(row.asDict(), Row(column=1, score=0.5).asDict()) 

 

 

if __name__ == "__main__": 

from pyspark.sql.tests.test_pandas_grouped_map import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)