Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import unittest 

 

from pyspark.sql.functions import array, explode, col, lit, udf, pandas_udf 

from pyspark.sql.types import DoubleType, StructType, StructField, Row 

from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ 

pandas_requirement_message, pyarrow_requirement_message 

from pyspark.testing.utils import QuietTest 

 

if have_pandas: 

import pandas as pd 

from pandas.testing import assert_frame_equal 

 

30 ↛ 31line 30 didn't jump to line 31, because the condition on line 30 was never trueif have_pyarrow: 

import pyarrow as pa # noqa: F401 

 

 

@unittest.skipIf( 

not have_pandas or not have_pyarrow, 

pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] 

class CogroupedMapInPandasTests(ReusedSQLTestCase): 

 

@property 

def data1(self): 

return self.spark.range(10).toDF('id') \ 

.withColumn("ks", array([lit(i) for i in range(20, 30)])) \ 

.withColumn("k", explode(col('ks')))\ 

.withColumn("v", col('k') * 10)\ 

.drop('ks') 

 

@property 

def data2(self): 

return self.spark.range(10).toDF('id') \ 

.withColumn("ks", array([lit(i) for i in range(20, 30)])) \ 

.withColumn("k", explode(col('ks'))) \ 

.withColumn("v2", col('k') * 100) \ 

.drop('ks') 

 

def test_simple(self): 

self._test_merge(self.data1, self.data2) 

 

def test_left_group_empty(self): 

left = self.data1.where(col("id") % 2 == 0) 

self._test_merge(left, self.data2) 

 

def test_right_group_empty(self): 

right = self.data2.where(col("id") % 2 == 0) 

self._test_merge(self.data1, right) 

 

def test_different_schemas(self): 

right = self.data2.withColumn('v3', lit('a')) 

self._test_merge(self.data1, right, 'id long, k int, v int, v2 int, v3 string') 

 

def test_complex_group_by(self): 

left = pd.DataFrame.from_dict({ 

'id': [1, 2, 3], 

'k': [5, 6, 7], 

'v': [9, 10, 11] 

}) 

 

right = pd.DataFrame.from_dict({ 

'id': [11, 12, 13], 

'k': [5, 6, 7], 

'v2': [90, 100, 110] 

}) 

 

left_gdf = self.spark\ 

.createDataFrame(left)\ 

.groupby(col('id') % 2 == 0) 

 

right_gdf = self.spark \ 

.createDataFrame(right) \ 

.groupby(col('id') % 2 == 0) 

 

def merge_pandas(l, r): 

return pd.merge(l[['k', 'v']], r[['k', 'v2']], on=['k']) 

 

result = left_gdf \ 

.cogroup(right_gdf) \ 

.applyInPandas(merge_pandas, 'k long, v long, v2 long') \ 

.sort(['k']) \ 

.toPandas() 

 

expected = pd.DataFrame.from_dict({ 

'k': [5, 6, 7], 

'v': [9, 10, 11], 

'v2': [90, 100, 110] 

}) 

 

assert_frame_equal(expected, result) 

 

def test_empty_group_by(self): 

left = self.data1 

right = self.data2 

 

def merge_pandas(l, r): 

return pd.merge(l, r, on=['id', 'k']) 

 

result = left.groupby().cogroup(right.groupby())\ 

.applyInPandas(merge_pandas, 'id long, k int, v int, v2 int') \ 

.sort(['id', 'k']) \ 

.toPandas() 

 

left = left.toPandas() 

right = right.toPandas() 

 

expected = pd \ 

.merge(left, right, on=['id', 'k']) \ 

.sort_values(by=['id', 'k']) 

 

assert_frame_equal(expected, result) 

 

def test_mixed_scalar_udfs_followed_by_cogrouby_apply(self): 

df = self.spark.range(0, 10).toDF('v1') 

df = df.withColumn('v2', udf(lambda x: x + 1, 'int')(df['v1'])) \ 

.withColumn('v3', pandas_udf(lambda x: x + 2, 'int')(df['v1'])) 

 

result = df.groupby().cogroup(df.groupby()) \ 

.applyInPandas(lambda x, y: pd.DataFrame([(x.sum().sum(), y.sum().sum())]), 

'sum1 int, sum2 int').collect() 

 

self.assertEqual(result[0]['sum1'], 165) 

self.assertEqual(result[0]['sum2'], 165) 

 

def test_with_key_left(self): 

self._test_with_key(self.data1, self.data1, isLeft=True) 

 

def test_with_key_right(self): 

self._test_with_key(self.data1, self.data1, isLeft=False) 

 

def test_with_key_left_group_empty(self): 

left = self.data1.where(col("id") % 2 == 0) 

self._test_with_key(left, self.data1, isLeft=True) 

 

def test_with_key_right_group_empty(self): 

right = self.data1.where(col("id") % 2 == 0) 

self._test_with_key(self.data1, right, isLeft=False) 

 

def test_with_key_complex(self): 

 

def left_assign_key(key, l, _): 

return l.assign(key=key[0]) 

 

result = self.data1 \ 

.groupby(col('id') % 2 == 0)\ 

.cogroup(self.data2.groupby(col('id') % 2 == 0)) \ 

.applyInPandas(left_assign_key, 'id long, k int, v int, key boolean') \ 

.sort(['id', 'k']) \ 

.toPandas() 

 

expected = self.data1.toPandas() 

expected = expected.assign(key=expected.id % 2 == 0) 

 

assert_frame_equal(expected, result) 

 

def test_wrong_return_type(self): 

# Test that we get a sensible exception invalid values passed to apply 

left = self.data1 

right = self.data2 

with QuietTest(self.sc): 

with self.assertRaisesRegex( 

NotImplementedError, 

'Invalid return type.*ArrayType.*TimestampType'): 

left.groupby('id').cogroup(right.groupby('id')).applyInPandas( 

lambda l, r: l, 'id long, v array<timestamp>') 

 

def test_wrong_args(self): 

left = self.data1 

right = self.data2 

with self.assertRaisesRegex(ValueError, 'Invalid function'): 

left.groupby('id').cogroup(right.groupby('id')) \ 

.applyInPandas(lambda: 1, StructType([StructField("d", DoubleType())])) 

 

def test_case_insensitive_grouping_column(self): 

# SPARK-31915: case-insensitive grouping column should work. 

df1 = self.spark.createDataFrame([(1, 1)], ("column", "value")) 

 

row = df1.groupby("ColUmn").cogroup( 

df1.groupby("COLUMN") 

).applyInPandas(lambda r, l: r + l, "column long, value long").first() 

self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) 

 

df2 = self.spark.createDataFrame([(1, 1)], ("column", "value")) 

 

row = df1.groupby("ColUmn").cogroup( 

df2.groupby("COLUMN") 

).applyInPandas(lambda r, l: r + l, "column long, value long").first() 

self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) 

 

def test_self_join(self): 

# SPARK-34319: self-join with FlatMapCoGroupsInPandas 

df = self.spark.createDataFrame([(1, 1)], ("column", "value")) 

 

row = df.groupby("ColUmn").cogroup( 

df.groupby("COLUMN") 

).applyInPandas(lambda r, l: r + l, "column long, value long") 

 

row = row.join(row).first() 

 

self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) 

 

@staticmethod 

def _test_with_key(left, right, isLeft): 

 

def right_assign_key(key, l, r): 

return l.assign(key=key[0]) if isLeft else r.assign(key=key[0]) 

 

result = left \ 

.groupby('id') \ 

.cogroup(right.groupby('id')) \ 

.applyInPandas(right_assign_key, 'id long, k int, v int, key long') \ 

.toPandas() 

 

expected = left.toPandas() if isLeft else right.toPandas() 

expected = expected.assign(key=expected.id) 

 

assert_frame_equal(expected, result) 

 

@staticmethod 

def _test_merge(left, right, output_schema='id long, k int, v int, v2 int'): 

 

def merge_pandas(l, r): 

return pd.merge(l, r, on=['id', 'k']) 

 

result = left \ 

.groupby('id') \ 

.cogroup(right.groupby('id')) \ 

.applyInPandas(merge_pandas, output_schema)\ 

.sort(['id', 'k']) \ 

.toPandas() 

 

left = left.toPandas() 

right = right.toPandas() 

 

expected = pd \ 

.merge(left, right, on=['id', 'k']) \ 

.sort_values(by=['id', 'k']) 

 

assert_frame_equal(expected, result) 

 

 

if __name__ == "__main__": 

from pyspark.sql.tests.test_pandas_cogrouped_map import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)