#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
from itertools import chain
import re
from py4j.protocol import Py4JJavaError
from pyspark.sql import Row, Window
from pyspark.sql.functions import udf, input_file_name, col, percentile_approx, \
lit, assert_true, sum_distinct, sumDistinct, shiftleft, shiftLeft, shiftRight, \
shiftright, shiftrightunsigned, shiftRightUnsigned
from pyspark.testing.sqlutils import ReusedSQLTestCase
class FunctionsTests(ReusedSQLTestCase):
def test_explode(self):
from pyspark.sql.functions import explode, explode_outer, posexplode_outer
d = [
Row(a=1, intlist=[1, 2, 3], mapfield={"a": "b"}),
Row(a=1, intlist=[], mapfield={}),
Row(a=1, intlist=None, mapfield=None),
]
rdd = self.sc.parallelize(d)
data = self.spark.createDataFrame(rdd)
result = data.select(explode(data.intlist).alias("a")).select("a").collect()
self.assertEqual(result[0][0], 1)
self.assertEqual(result[1][0], 2)
self.assertEqual(result[2][0], 3)
result = data.select(explode(data.mapfield).alias("a", "b")).select("a", "b").collect()
self.assertEqual(result[0][0], "a")
self.assertEqual(result[0][1], "b")
result = [tuple(x) for x in data.select(posexplode_outer("intlist")).collect()]
self.assertEqual(result, [(0, 1), (1, 2), (2, 3), (None, None), (None, None)])
result = [tuple(x) for x in data.select(posexplode_outer("mapfield")).collect()]
self.assertEqual(result, [(0, 'a', 'b'), (None, None, None), (None, None, None)])
result = [x[0] for x in data.select(explode_outer("intlist")).collect()]
self.assertEqual(result, [1, 2, 3, None, None])
result = [tuple(x) for x in data.select(explode_outer("mapfield")).collect()]
self.assertEqual(result, [('a', 'b'), (None, None), (None, None)])
def test_basic_functions(self):
rdd = self.sc.parallelize(['{"foo":"bar"}', '{"foo":"baz"}'])
df = self.spark.read.json(rdd)
df.count()
df.collect()
df.schema
# cache and checkpoint
self.assertFalse(df.is_cached)
df.persist()
df.unpersist(True)
df.cache()
self.assertTrue(df.is_cached)
self.assertEqual(2, df.count())
with self.tempView("temp"):
df.createOrReplaceTempView("temp")
df = self.spark.sql("select foo from temp")
df.count()
df.collect()
def test_corr(self):
import math
df = self.sc.parallelize([Row(a=i, b=math.sqrt(i)) for i in range(10)]).toDF()
corr = df.stat.corr(u"a", "b")
self.assertTrue(abs(corr - 0.95734012) < 1e-6)
def test_sampleby(self):
df = self.sc.parallelize([Row(a=i, b=(i % 3)) for i in range(100)]).toDF()
sampled = df.stat.sampleBy(u"b", fractions={0: 0.5, 1: 0.5}, seed=0)
self.assertTrue(sampled.count() == 35)
def test_cov(self):
df = self.sc.parallelize([Row(a=i, b=2 * i) for i in range(10)]).toDF()
cov = df.stat.cov(u"a", "b")
self.assertTrue(abs(cov - 55.0 / 3) < 1e-6)
def test_crosstab(self):
df = self.sc.parallelize([Row(a=i % 3, b=i % 2) for i in range(1, 7)]).toDF()
ct = df.stat.crosstab(u"a", "b").collect()
ct = sorted(ct, key=lambda x: x[0])
for i, row in enumerate(ct):
self.assertEqual(row[0], str(i))
self.assertTrue(row[1], 1)
self.assertTrue(row[2], 1)
def test_math_functions(self):
df = self.sc.parallelize([Row(a=i, b=2 * i) for i in range(10)]).toDF()
from pyspark.sql import functions
import math
def get_values(l):
return [j[0] for j in l]
def assert_close(a, b):
c = get_values(b)
diff = [abs(v - c[k]) < 1e-6 for k, v in enumerate(a)]
return sum(diff) == len(a)
assert_close([math.cos(i) for i in range(10)],
df.select(functions.cos(df.a)).collect())
assert_close([math.cos(i) for i in range(10)],
df.select(functions.cos("a")).collect())
assert_close([math.sin(i) for i in range(10)],
df.select(functions.sin(df.a)).collect())
assert_close([math.sin(i) for i in range(10)],
df.select(functions.sin(df['a'])).collect())
assert_close([math.pow(i, 2 * i) for i in range(10)],
df.select(functions.pow(df.a, df.b)).collect())
assert_close([math.pow(i, 2) for i in range(10)],
df.select(functions.pow(df.a, 2)).collect())
assert_close([math.pow(i, 2) for i in range(10)],
df.select(functions.pow(df.a, 2.0)).collect())
assert_close([math.hypot(i, 2 * i) for i in range(10)],
df.select(functions.hypot(df.a, df.b)).collect())
assert_close([math.hypot(i, 2 * i) for i in range(10)],
df.select(functions.hypot("a", u"b")).collect())
assert_close([math.hypot(i, 2) for i in range(10)],
df.select(functions.hypot("a", 2)).collect())
assert_close([math.hypot(i, 2) for i in range(10)],
df.select(functions.hypot(df.a, 2)).collect())
def test_inverse_trig_functions(self):
from pyspark.sql import functions
funs = [
(functions.acosh, "ACOSH"),
(functions.asinh, "ASINH"),
(functions.atanh, "ATANH"),
]
cols = ["a", functions.col("a")]
for f, alias in funs:
for c in cols:
self.assertIn(f"{alias}(a)", repr(f(c)))
def test_rand_functions(self):
df = self.df
from pyspark.sql import functions
rnd = df.select('key', functions.rand()).collect()
for row in rnd:
assert row[1] >= 0.0 and row[1] <= 1.0, "got: %s" % row[1]
rndn = df.select('key', functions.randn(5)).collect()
for row in rndn:
assert row[1] >= -4.0 and row[1] <= 4.0, "got: %s" % row[1]
# If the specified seed is 0, we should use it.
# https://issues.apache.org/jira/browse/SPARK-9691
rnd1 = df.select('key', functions.rand(0)).collect()
rnd2 = df.select('key', functions.rand(0)).collect()
self.assertEqual(sorted(rnd1), sorted(rnd2))
rndn1 = df.select('key', functions.randn(0)).collect()
rndn2 = df.select('key', functions.randn(0)).collect()
self.assertEqual(sorted(rndn1), sorted(rndn2))
def test_string_functions(self):
from pyspark.sql import functions
from pyspark.sql.functions import col, lit
string_functions = [
"upper", "lower", "ascii",
"base64", "unbase64",
"ltrim", "rtrim", "trim"
]
df = self.spark.createDataFrame([['nick']], schema=['name'])
self.assertRaisesRegex(
TypeError,
"must be the same type",
lambda: df.select(col('name').substr(0, lit(1))))
for name in string_functions:
self.assertEqual(
df.select(getattr(functions, name)("name")).first()[0],
df.select(getattr(functions, name)(col("name"))).first()[0])
def test_array_contains_function(self):
from pyspark.sql.functions import array_contains
df = self.spark.createDataFrame([(["1", "2", "3"],), ([],)], ['data'])
actual = df.select(array_contains(df.data, "1").alias('b')).collect()
self.assertEqual([Row(b=True), Row(b=False)], actual)
def test_between_function(self):
df = self.sc.parallelize([
Row(a=1, b=2, c=3),
Row(a=2, b=1, c=3),
Row(a=4, b=1, c=4)]).toDF()
self.assertEqual([Row(a=2, b=1, c=3), Row(a=4, b=1, c=4)],
df.filter(df.a.between(df.b, df.c)).collect())
def test_dayofweek(self):
from pyspark.sql.functions import dayofweek
dt = datetime.datetime(2017, 11, 6)
df = self.spark.createDataFrame([Row(date=dt)])
row = df.select(dayofweek(df.date)).first()
self.assertEqual(row[0], 2)
def test_expr(self):
from pyspark.sql import functions
row = Row(a="length string", b=75)
df = self.spark.createDataFrame([row])
result = df.select(functions.expr("length(a)")).collect()[0].asDict()
self.assertEqual(13, result["length(a)"])
# add test for SPARK-10577 (test broadcast join hint)
def test_functions_broadcast(self):
from pyspark.sql.functions import broadcast
df1 = self.spark.createDataFrame([(1, "1"), (2, "2")], ("key", "value"))
df2 = self.spark.createDataFrame([(1, "1"), (2, "2")], ("key", "value"))
# equijoin - should be converted into broadcast join
plan1 = df1.join(broadcast(df2), "key")._jdf.queryExecution().executedPlan()
self.assertEqual(1, plan1.toString().count("BroadcastHashJoin"))
# no join key -- should not be a broadcast join
plan2 = df1.crossJoin(broadcast(df2))._jdf.queryExecution().executedPlan()
self.assertEqual(0, plan2.toString().count("BroadcastHashJoin"))
# planner should not crash without a join
broadcast(df1)._jdf.queryExecution().executedPlan()
def test_first_last_ignorenulls(self):
from pyspark.sql import functions
df = self.spark.range(0, 100)
df2 = df.select(functions.when(df.id % 3 == 0, None).otherwise(df.id).alias("id"))
df3 = df2.select(functions.first(df2.id, False).alias('a'),
functions.first(df2.id, True).alias('b'),
functions.last(df2.id, False).alias('c'),
functions.last(df2.id, True).alias('d'))
self.assertEqual([Row(a=None, b=1, c=None, d=98)], df3.collect())
def test_approxQuantile(self):
df = self.sc.parallelize([Row(a=i, b=i+10) for i in range(10)]).toDF()
for f in ["a", u"a"]:
aq = df.stat.approxQuantile(f, [0.1, 0.5, 0.9], 0.1)
self.assertTrue(isinstance(aq, list))
self.assertEqual(len(aq), 3)
self.assertTrue(all(isinstance(q, float) for q in aq))
aqs = df.stat.approxQuantile(["a", u"b"], [0.1, 0.5, 0.9], 0.1)
self.assertTrue(isinstance(aqs, list))
self.assertEqual(len(aqs), 2)
self.assertTrue(isinstance(aqs[0], list))
self.assertEqual(len(aqs[0]), 3)
self.assertTrue(all(isinstance(q, float) for q in aqs[0]))
self.assertTrue(isinstance(aqs[1], list))
self.assertEqual(len(aqs[1]), 3)
self.assertTrue(all(isinstance(q, float) for q in aqs[1]))
aqt = df.stat.approxQuantile((u"a", "b"), [0.1, 0.5, 0.9], 0.1)
self.assertTrue(isinstance(aqt, list))
self.assertEqual(len(aqt), 2)
self.assertTrue(isinstance(aqt[0], list))
self.assertEqual(len(aqt[0]), 3)
self.assertTrue(all(isinstance(q, float) for q in aqt[0]))
self.assertTrue(isinstance(aqt[1], list))
self.assertEqual(len(aqt[1]), 3)
self.assertTrue(all(isinstance(q, float) for q in aqt[1]))
self.assertRaises(TypeError, lambda: df.stat.approxQuantile(123, [0.1, 0.9], 0.1))
self.assertRaises(TypeError, lambda: df.stat.approxQuantile(("a", 123), [0.1, 0.9], 0.1))
self.assertRaises(TypeError, lambda: df.stat.approxQuantile(["a", 123], [0.1, 0.9], 0.1))
def test_sorting_functions_with_column(self):
from pyspark.sql import functions
from pyspark.sql.column import Column
funs = [
functions.asc_nulls_first, functions.asc_nulls_last,
functions.desc_nulls_first, functions.desc_nulls_last
]
exprs = [col("x"), "x"]
for fun in funs:
for expr in exprs:
res = fun(expr)
self.assertIsInstance(res, Column)
self.assertIn(
f"""'x {fun.__name__.replace("_", " ").upper()}'""",
str(res)
)
for expr in exprs:
res = functions.asc(expr)
self.assertIsInstance(res, Column)
self.assertIn(
"""'x ASC NULLS FIRST'""",
str(res)
)
for expr in exprs:
res = functions.desc(expr)
self.assertIsInstance(res, Column)
self.assertIn(
"""'x DESC NULLS LAST'""",
str(res)
)
def test_sort_with_nulls_order(self):
from pyspark.sql import functions
df = self.spark.createDataFrame(
[('Tom', 80), (None, 60), ('Alice', 50)], ["name", "height"])
self.assertEqual(
df.select(df.name).orderBy(functions.asc_nulls_first('name')).collect(),
[Row(name=None), Row(name=u'Alice'), Row(name=u'Tom')])
self.assertEqual(
df.select(df.name).orderBy(functions.asc_nulls_last('name')).collect(),
[Row(name=u'Alice'), Row(name=u'Tom'), Row(name=None)])
self.assertEqual(
df.select(df.name).orderBy(functions.desc_nulls_first('name')).collect(),
[Row(name=None), Row(name=u'Tom'), Row(name=u'Alice')])
self.assertEqual(
df.select(df.name).orderBy(functions.desc_nulls_last('name')).collect(),
[Row(name=u'Tom'), Row(name=u'Alice'), Row(name=None)])
def test_input_file_name_reset_for_rdd(self):
rdd = self.sc.textFile('python/test_support/hello/hello.txt').map(lambda x: {'data': x})
df = self.spark.createDataFrame(rdd, "data STRING")
df.select(input_file_name().alias('file')).collect()
non_file_df = self.spark.range(100).select(input_file_name())
results = non_file_df.collect()
self.assertTrue(len(results) == 100)
# [SPARK-24605]: if everything was properly reset after the last job, this should return
# empty string rather than the file read in the last job.
for result in results:
self.assertEqual(result[0], '')
def test_slice(self):
from pyspark.sql.functions import lit, size, slice
df = self.spark.createDataFrame([([1, 2, 3],), ([4, 5],)], ['x'])
self.assertEqual(
df.select(slice(df.x, 2, 2).alias("sliced")).collect(),
df.select(slice(df.x, lit(2), lit(2)).alias("sliced")).collect(),
)
self.assertEqual(
df.select(slice(df.x, size(df.x) - 1, lit(1)).alias("sliced")).collect(),
[Row(sliced=[2]), Row(sliced=[4])]
)
self.assertEqual(
df.select(slice(df.x, lit(1), size(df.x) - 1).alias("sliced")).collect(),
[Row(sliced=[1, 2]), Row(sliced=[4])]
)
def test_array_repeat(self):
from pyspark.sql.functions import array_repeat, lit
df = self.spark.range(1)
self.assertEqual(
df.select(array_repeat("id", 3)).toDF("val").collect(),
df.select(array_repeat("id", lit(3))).toDF("val").collect(),
)
def test_input_file_name_udf(self):
df = self.spark.read.text('python/test_support/hello/hello.txt')
df = df.select(udf(lambda x: x)("value"), input_file_name().alias('file'))
file_name = df.collect()[0].file
self.assertTrue("python/test_support/hello/hello.txt" in file_name)
def test_overlay(self):
from pyspark.sql.functions import col, lit, overlay
from itertools import chain
import re
actual = list(chain.from_iterable([
re.findall("(overlay\\(.*\\))", str(x)) for x in [
overlay(col("foo"), col("bar"), 1),
overlay("x", "y", 3),
overlay(col("x"), col("y"), 1, 3),
overlay("x", "y", 2, 5),
overlay("x", "y", lit(11)),
overlay("x", "y", lit(2), lit(5)),
]
]))
expected = [
"overlay(foo, bar, 1, -1)",
"overlay(x, y, 3, -1)",
"overlay(x, y, 1, 3)",
"overlay(x, y, 2, 5)",
"overlay(x, y, 11, -1)",
"overlay(x, y, 2, 5)",
]
self.assertListEqual(actual, expected)
def test_percentile_approx(self):
actual = list(chain.from_iterable([
re.findall("(percentile_approx\\(.*\\))", str(x)) for x in [
percentile_approx(col("foo"), lit(0.5)),
percentile_approx(col("bar"), 0.25, 42),
percentile_approx(col("bar"), [0.25, 0.5, 0.75]),
percentile_approx(col("foo"), (0.05, 0.95), 100),
percentile_approx("foo", 0.5),
percentile_approx("bar", [0.1, 0.9], lit(10)),
]
]))
expected = [
"percentile_approx(foo, 0.5, 10000)",
"percentile_approx(bar, 0.25, 42)",
"percentile_approx(bar, array(0.25, 0.5, 0.75), 10000)",
"percentile_approx(foo, array(0.05, 0.95), 100)",
"percentile_approx(foo, 0.5, 10000)",
"percentile_approx(bar, array(0.1, 0.9), 10)"
]
self.assertListEqual(actual, expected)
def test_nth_value(self):
from pyspark.sql import Window
from pyspark.sql.functions import nth_value
df = self.spark.createDataFrame([
("a", 0, None),
("a", 1, "x"),
("a", 2, "y"),
("a", 3, "z"),
("a", 4, None),
("b", 1, None),
("b", 2, None)], schema=("key", "order", "value"))
w = Window.partitionBy("key").orderBy("order")
rs = df.select(
df.key,
df.order,
nth_value("value", 2).over(w),
nth_value("value", 2, False).over(w),
nth_value("value", 2, True).over(w)).collect()
expected = [
("a", 0, None, None, None),
("a", 1, "x", "x", None),
("a", 2, "x", "x", "y"),
("a", 3, "x", "x", "y"),
("a", 4, "x", "x", "y"),
("b", 1, None, None, None),
("b", 2, None, None, None)
]
for r, ex in zip(sorted(rs), sorted(expected)):
self.assertEqual(tuple(r), ex[:len(r)])
def test_higher_order_function_failures(self):
from pyspark.sql.functions import col, transform
# Should fail with varargs
with self.assertRaises(ValueError):
478 ↛ exitline 478 didn't run the lambda on line 478 transform(col("foo"), lambda *x: lit(1))
# Should fail with kwargs
with self.assertRaises(ValueError):
482 ↛ exitline 482 didn't run the lambda on line 482 transform(col("foo"), lambda **x: lit(1))
# Should fail with nullary function
with self.assertRaises(ValueError):
486 ↛ exitline 486 didn't run the lambda on line 486 transform(col("foo"), lambda: lit(1))
# Should fail with quaternary function
with self.assertRaises(ValueError):
490 ↛ exitline 490 didn't run the lambda on line 490 transform(col("foo"), lambda x1, x2, x3, x4: lit(1))
# Should fail if function doesn't return Column
with self.assertRaises(ValueError):
transform(col("foo"), lambda x: 1)
def test_nested_higher_order_function(self):
# SPARK-35382: lambda vars must be resolved properly in nested higher order functions
from pyspark.sql.functions import flatten, struct, transform
df = self.spark.sql("SELECT array(1, 2, 3) as numbers, array('a', 'b', 'c') as letters")
actual = df.select(flatten(
transform(
"numbers",
lambda number: transform(
"letters",
lambda letter: struct(number.alias("n"), letter.alias("l"))
)
)
)).first()[0]
expected = [(1, "a"), (1, "b"), (1, "c"),
(2, "a"), (2, "b"), (2, "c"),
(3, "a"), (3, "b"), (3, "c")]
self.assertEquals(actual, expected)
def test_window_functions(self):
df = self.spark.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], ["key", "value"])
w = Window.partitionBy("value").orderBy("key")
from pyspark.sql import functions as F
sel = df.select(df.value, df.key,
F.max("key").over(w.rowsBetween(0, 1)),
F.min("key").over(w.rowsBetween(0, 1)),
F.count("key").over(w.rowsBetween(float('-inf'), float('inf'))),
F.row_number().over(w),
F.rank().over(w),
F.dense_rank().over(w),
F.ntile(2).over(w))
rs = sorted(sel.collect())
expected = [
("1", 1, 1, 1, 1, 1, 1, 1, 1),
("2", 1, 1, 1, 3, 1, 1, 1, 1),
("2", 1, 2, 1, 3, 2, 1, 1, 1),
("2", 2, 2, 2, 3, 3, 3, 2, 2)
]
for r, ex in zip(rs, expected):
self.assertEqual(tuple(r), ex[:len(r)])
def test_window_functions_without_partitionBy(self):
df = self.spark.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], ["key", "value"])
w = Window.orderBy("key", df.value)
from pyspark.sql import functions as F
sel = df.select(df.value, df.key,
F.max("key").over(w.rowsBetween(0, 1)),
F.min("key").over(w.rowsBetween(0, 1)),
F.count("key").over(w.rowsBetween(float('-inf'), float('inf'))),
F.row_number().over(w),
F.rank().over(w),
F.dense_rank().over(w),
F.ntile(2).over(w))
rs = sorted(sel.collect())
expected = [
("1", 1, 1, 1, 4, 1, 1, 1, 1),
("2", 1, 1, 1, 4, 2, 2, 2, 1),
("2", 1, 2, 1, 4, 3, 2, 2, 2),
("2", 2, 2, 2, 4, 4, 4, 3, 2)
]
for r, ex in zip(rs, expected):
self.assertEqual(tuple(r), ex[:len(r)])
def test_window_functions_cumulative_sum(self):
df = self.spark.createDataFrame([("one", 1), ("two", 2)], ["key", "value"])
from pyspark.sql import functions as F
# Test cumulative sum
sel = df.select(
df.key,
F.sum(df.value).over(Window.rowsBetween(Window.unboundedPreceding, 0)))
rs = sorted(sel.collect())
expected = [("one", 1), ("two", 3)]
for r, ex in zip(rs, expected):
self.assertEqual(tuple(r), ex[:len(r)])
# Test boundary values less than JVM's Long.MinValue and make sure we don't overflow
sel = df.select(
df.key,
F.sum(df.value).over(Window.rowsBetween(Window.unboundedPreceding - 1, 0)))
rs = sorted(sel.collect())
expected = [("one", 1), ("two", 3)]
for r, ex in zip(rs, expected):
self.assertEqual(tuple(r), ex[:len(r)])
# Test boundary values greater than JVM's Long.MaxValue and make sure we don't overflow
frame_end = Window.unboundedFollowing + 1
sel = df.select(
df.key,
F.sum(df.value).over(Window.rowsBetween(Window.currentRow, frame_end)))
rs = sorted(sel.collect())
expected = [("one", 3), ("two", 2)]
for r, ex in zip(rs, expected):
self.assertEqual(tuple(r), ex[:len(r)])
def test_collect_functions(self):
df = self.spark.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], ["key", "value"])
from pyspark.sql import functions
self.assertEqual(
sorted(df.select(functions.collect_set(df.key).alias('r')).collect()[0].r),
[1, 2])
self.assertEqual(
sorted(df.select(functions.collect_list(df.key).alias('r')).collect()[0].r),
[1, 1, 1, 2])
self.assertEqual(
sorted(df.select(functions.collect_set(df.value).alias('r')).collect()[0].r),
["1", "2"])
self.assertEqual(
sorted(df.select(functions.collect_list(df.value).alias('r')).collect()[0].r),
["1", "2", "2", "2"])
def test_datetime_functions(self):
from pyspark.sql import functions
from datetime import date
df = self.spark.range(1).selectExpr("'2017-01-22' as dateCol")
parse_result = df.select(functions.to_date(functions.col("dateCol"))).first()
self.assertEqual(date(2017, 1, 22), parse_result['to_date(dateCol)'])
def test_assert_true(self):
from pyspark.sql.functions import assert_true
df = self.spark.range(3)
self.assertEqual(
df.select(assert_true(df.id < 3)).toDF("val").collect(),
[Row(val=None), Row(val=None), Row(val=None)],
)
with self.assertRaises(Py4JJavaError) as cm:
df.select(assert_true(df.id < 2, 'too big')).toDF("val").collect()
self.assertIn("java.lang.RuntimeException", str(cm.exception))
self.assertIn("too big", str(cm.exception))
with self.assertRaises(Py4JJavaError) as cm:
df.select(assert_true(df.id < 2, df.id * 1e6)).toDF("val").collect()
self.assertIn("java.lang.RuntimeException", str(cm.exception))
self.assertIn("2000000", str(cm.exception))
with self.assertRaises(TypeError) as cm:
df.select(assert_true(df.id < 2, 5))
self.assertEqual(
"errMsg should be a Column or a str, got <class 'int'>",
str(cm.exception)
)
def test_raise_error(self):
from pyspark.sql.functions import raise_error
df = self.spark.createDataFrame([Row(id="foobar")])
with self.assertRaises(Py4JJavaError) as cm:
df.select(raise_error(df.id)).collect()
self.assertIn("java.lang.RuntimeException", str(cm.exception))
self.assertIn("foobar", str(cm.exception))
with self.assertRaises(Py4JJavaError) as cm:
df.select(raise_error("barfoo")).collect()
self.assertIn("java.lang.RuntimeException", str(cm.exception))
self.assertIn("barfoo", str(cm.exception))
with self.assertRaises(TypeError) as cm:
df.select(raise_error(None))
self.assertEqual(
"errMsg should be a Column or a str, got <class 'NoneType'>",
str(cm.exception)
)
def test_sum_distinct(self):
self.spark.range(10).select(
assert_true(sum_distinct(col("id")) == sumDistinct(col("id")))).collect()
def test_shiftleft(self):
self.spark.range(10).select(
assert_true(shiftLeft(col("id"), 2) == shiftleft(col("id"), 2))).collect()
def test_shiftright(self):
self.spark.range(10).select(
assert_true(shiftRight(col("id"), 2) == shiftright(col("id"), 2))).collect()
def test_shiftrightunsigned(self):
self.spark.range(10).select(
assert_true(
shiftRightUnsigned(col("id"), 2) == shiftrightunsigned(col("id"), 2))).collect()
if __name__ == "__main__":
import unittest
from pyspark.sql.tests.test_functions import * # noqa: F401
try:
import xmlrunner # type: ignore[import]
testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)
|