Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

# -*- encoding: utf-8 -*- 

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

from pyspark.sql import Column, Row 

from pyspark.sql.types import StructType, StructField, LongType 

from pyspark.sql.utils import AnalysisException 

from pyspark.testing.sqlutils import ReusedSQLTestCase 

 

 

class ColumnTests(ReusedSQLTestCase): 

 

def test_column_name_encoding(self): 

"""Ensure that created columns has `str` type consistently.""" 

columns = self.spark.createDataFrame([('Alice', 1)], ['name', u'age']).columns 

self.assertEqual(columns, ['name', 'age']) 

self.assertTrue(isinstance(columns[0], str)) 

self.assertTrue(isinstance(columns[1], str)) 

 

def test_and_in_expression(self): 

self.assertEqual(4, self.df.filter((self.df.key <= 10) & (self.df.value <= "2")).count()) 

self.assertRaises(ValueError, lambda: (self.df.key <= 10) and (self.df.value <= "2")) 

self.assertEqual(14, self.df.filter((self.df.key <= 3) | (self.df.value < "2")).count()) 

self.assertRaises(ValueError, lambda: self.df.key <= 3 or self.df.value < "2") 

self.assertEqual(99, self.df.filter(~(self.df.key == 1)).count()) 

self.assertRaises(ValueError, lambda: not self.df.key == 1) 

 

def test_validate_column_types(self): 

from pyspark.sql.functions import udf, to_json 

from pyspark.sql.column import _to_java_column 

 

self.assertTrue("Column" in _to_java_column("a").getClass().toString()) 

self.assertTrue("Column" in _to_java_column(u"a").getClass().toString()) 

self.assertTrue("Column" in _to_java_column(self.spark.range(1).id).getClass().toString()) 

 

self.assertRaisesRegex( 

TypeError, 

"Invalid argument, not a string or column", 

lambda: _to_java_column(1)) 

 

class A(): 

pass 

 

self.assertRaises(TypeError, lambda: _to_java_column(A())) 

self.assertRaises(TypeError, lambda: _to_java_column([])) 

 

self.assertRaisesRegex( 

TypeError, 

"Invalid argument, not a string or column", 

lambda: udf(lambda x: x)(None)) 

self.assertRaises(TypeError, lambda: to_json(1)) 

 

def test_column_operators(self): 

ci = self.df.key 

cs = self.df.value 

c = ci == cs 

self.assertTrue(isinstance((- ci - 1 - 2) % 3 * 2.5 / 3.5, Column)) 

rcc = (1 + ci), (1 - ci), (1 * ci), (1 / ci), (1 % ci), (1 ** ci), (ci ** 1) 

self.assertTrue(all(isinstance(c, Column) for c in rcc)) 

cb = [ci == 5, ci != 0, ci > 3, ci < 4, ci >= 0, ci <= 7] 

self.assertTrue(all(isinstance(c, Column) for c in cb)) 

cbool = (ci & ci), (ci | ci), (~ci) 

self.assertTrue(all(isinstance(c, Column) for c in cbool)) 

css = cs.contains('a'), cs.like('a'), cs.rlike('a'), cs.asc(), cs.desc(),\ 

cs.startswith('a'), cs.endswith('a'), ci.eqNullSafe(cs) 

self.assertTrue(all(isinstance(c, Column) for c in css)) 

self.assertTrue(isinstance(ci.cast(LongType()), Column)) 

self.assertRaisesRegex(ValueError, 

"Cannot apply 'in' operator against a column", 

lambda: 1 in cs) 

 

def test_column_accessor(self): 

from pyspark.sql.functions import col 

 

self.assertIsInstance(col("foo")[1:3], Column) 

self.assertIsInstance(col("foo")[0], Column) 

self.assertIsInstance(col("foo")["bar"], Column) 

self.assertRaises(ValueError, lambda: col("foo")[0:10:2]) 

 

def test_column_select(self): 

df = self.df 

self.assertEqual(self.testData, df.select("*").collect()) 

self.assertEqual(self.testData, df.select(df.key, df.value).collect()) 

self.assertEqual([Row(value='1')], df.where(df.key == 1).select(df.value).collect()) 

 

def test_access_column(self): 

df = self.df 

self.assertTrue(isinstance(df.key, Column)) 

self.assertTrue(isinstance(df['key'], Column)) 

self.assertTrue(isinstance(df[0], Column)) 

self.assertRaises(IndexError, lambda: df[2]) 

self.assertRaises(AnalysisException, lambda: df["bad_key"]) 

self.assertRaises(TypeError, lambda: df[{}]) 

 

def test_column_name_with_non_ascii(self): 

columnName = "数量" 

self.assertTrue(isinstance(columnName, str)) 

schema = StructType([StructField(columnName, LongType(), True)]) 

df = self.spark.createDataFrame([(1,)], schema) 

self.assertEqual(schema, df.schema) 

self.assertEqual("DataFrame[数量: bigint]", str(df)) 

self.assertEqual([("数量", 'bigint')], df.dtypes) 

self.assertEqual(1, df.select("数量").first()[0]) 

self.assertEqual(1, df.select(df["数量"]).first()[0]) 

self.assertTrue(columnName in repr(df[columnName])) 

 

def test_field_accessor(self): 

df = self.sc.parallelize([Row(l=[1], r=Row(a=1, b="b"), d={"k": "v"})]).toDF() 

self.assertEqual(1, df.select(df.l[0]).first()[0]) 

self.assertEqual(1, df.select(df.r["a"]).first()[0]) 

self.assertEqual(1, df.select(df["r.a"]).first()[0]) 

self.assertEqual("b", df.select(df.r["b"]).first()[0]) 

self.assertEqual("b", df.select(df["r.b"]).first()[0]) 

self.assertEqual("v", df.select(df.d["k"]).first()[0]) 

 

def test_bitwise_operations(self): 

from pyspark.sql import functions 

row = Row(a=170, b=75) 

df = self.spark.createDataFrame([row]) 

result = df.select(df.a.bitwiseAND(df.b)).collect()[0].asDict() 

self.assertEqual(170 & 75, result['(a & b)']) 

result = df.select(df.a.bitwiseOR(df.b)).collect()[0].asDict() 

self.assertEqual(170 | 75, result['(a | b)']) 

result = df.select(df.a.bitwiseXOR(df.b)).collect()[0].asDict() 

self.assertEqual(170 ^ 75, result['(a ^ b)']) 

result = df.select(functions.bitwiseNOT(df.b)).collect()[0].asDict() 

self.assertEqual(~75, result['~b']) 

result = df.select(functions.bitwise_not(df.b)).collect()[0].asDict() 

self.assertEqual(~75, result['~b']) 

 

def test_with_field(self): 

from pyspark.sql.functions import lit, col 

df = self.spark.createDataFrame([Row(a=Row(b=1, c=2))]) 

self.assertIsInstance(df['a'].withField('b', lit(3)), Column) 

self.assertIsInstance(df['a'].withField('d', lit(3)), Column) 

result = df.withColumn('a', df['a'].withField('d', lit(3))).collect()[0].asDict() 

self.assertEqual(3, result['a']['d']) 

result = df.withColumn('a', df['a'].withField('b', lit(3))).collect()[0].asDict() 

self.assertEqual(3, result['a']['b']) 

 

self.assertRaisesRegex(TypeError, 

'col should be a Column', 

lambda: df['a'].withField('b', 3)) 

self.assertRaisesRegex(TypeError, 

'fieldName should be a string', 

lambda: df['a'].withField(col('b'), lit(3))) 

 

def test_drop_fields(self): 

df = self.spark.createDataFrame([Row(a=Row(b=1, c=2, d=Row(e=3, f=4)))]) 

self.assertIsInstance(df["a"].dropFields("b"), Column) 

self.assertIsInstance(df["a"].dropFields("b", "c"), Column) 

self.assertIsInstance(df["a"].dropFields("d.e"), Column) 

 

result = df.select( 

df["a"].dropFields("b").alias("a1"), 

df["a"].dropFields("d.e").alias("a2"), 

).first().asDict(True) 

 

self.assertTrue( 

"b" not in result["a1"] and 

"c" in result["a1"] and 

"d" in result["a1"] 

) 

 

self.assertTrue( 

"e" not in result["a2"]["d"] and 

"f" in result["a2"]["d"] 

) 

 

if __name__ == "__main__": 

import unittest 

from pyspark.sql.tests.test_column import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)