Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

import sys 

 

from py4j.java_gateway import JavaClass 

 

from pyspark import RDD, since 

from pyspark.sql.column import _to_seq, _to_java_column 

from pyspark.sql.types import StructType 

from pyspark.sql import utils 

from pyspark.sql.utils import to_str 

 

__all__ = ["DataFrameReader", "DataFrameWriter"] 

 

 

class OptionUtils(object): 

 

def _set_opts(self, schema=None, **options): 

""" 

Set named options (filter out those the value is None) 

""" 

if schema is not None: 

self.schema(schema) 

for k, v in options.items(): 

if v is not None: 

self.option(k, v) 

 

 

class DataFrameReader(OptionUtils): 

""" 

Interface used to load a :class:`DataFrame` from external storage systems 

(e.g. file systems, key-value stores, etc). Use :attr:`SparkSession.read` 

to access this. 

 

.. versionadded:: 1.4 

""" 

 

def __init__(self, spark): 

self._jreader = spark._ssql_ctx.read() 

self._spark = spark 

 

def _df(self, jdf): 

from pyspark.sql.dataframe import DataFrame 

return DataFrame(jdf, self._spark) 

 

def format(self, source): 

"""Specifies the input data source format. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

source : str 

string, name of the data source, e.g. 'json', 'parquet'. 

 

Examples 

-------- 

>>> df = spark.read.format('json').load('python/test_support/sql/people.json') 

>>> df.dtypes 

[('age', 'bigint'), ('name', 'string')] 

 

""" 

self._jreader = self._jreader.format(source) 

return self 

 

def schema(self, schema): 

"""Specifies the input schema. 

 

Some data sources (e.g. JSON) can infer the input schema automatically from data. 

By specifying the schema here, the underlying data source can skip the schema 

inference step, and thus speed up data loading. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

schema : :class:`pyspark.sql.types.StructType` or str 

a :class:`pyspark.sql.types.StructType` object or a DDL-formatted string 

(For example ``col0 INT, col1 DOUBLE``). 

 

>>> s = spark.read.schema("col0 INT, col1 DOUBLE") 

""" 

from pyspark.sql import SparkSession 

spark = SparkSession.builder.getOrCreate() 

if isinstance(schema, StructType): 

jschema = spark._jsparkSession.parseDataType(schema.json()) 

self._jreader = self._jreader.schema(jschema) 

102 ↛ 105line 102 didn't jump to line 105, because the condition on line 102 was never false elif isinstance(schema, str): 

self._jreader = self._jreader.schema(schema) 

else: 

raise TypeError("schema should be StructType or string") 

return self 

 

@since(1.5) 

def option(self, key, value): 

"""Adds an input option for the underlying data source. 

""" 

self._jreader = self._jreader.option(key, to_str(value)) 

return self 

 

@since(1.4) 

def options(self, **options): 

"""Adds input options for the underlying data source. 

""" 

for k in options: 

self._jreader = self._jreader.option(k, to_str(options[k])) 

return self 

 

def load(self, path=None, format=None, schema=None, **options): 

"""Loads data from a data source and returns it as a :class:`DataFrame`. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

path : str or list, optional 

optional string or a list of string for file-system backed data sources. 

format : str, optional 

optional string for format of the data source. Default to 'parquet'. 

schema : :class:`pyspark.sql.types.StructType` or str, optional 

optional :class:`pyspark.sql.types.StructType` for the input schema 

or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``). 

**options : dict 

all other string options 

 

Examples 

-------- 

>>> df = spark.read.format("parquet").load('python/test_support/sql/parquet_partitioned', 

... opt1=True, opt2=1, opt3='str') 

>>> df.dtypes 

[('name', 'string'), ('year', 'int'), ('month', 'int'), ('day', 'int')] 

 

>>> df = spark.read.format('json').load(['python/test_support/sql/people.json', 

... 'python/test_support/sql/people1.json']) 

>>> df.dtypes 

[('age', 'bigint'), ('aka', 'string'), ('name', 'string')] 

""" 

if format is not None: 

self.format(format) 

154 ↛ 155line 154 didn't jump to line 155, because the condition on line 154 was never true if schema is not None: 

self.schema(schema) 

self.options(**options) 

if isinstance(path, str): 

return self._df(self._jreader.load(path)) 

elif path is not None: 

160 ↛ 161line 160 didn't jump to line 161, because the condition on line 160 was never true if type(path) != list: 

path = [path] 

return self._df(self._jreader.load(self._spark._sc._jvm.PythonUtils.toSeq(path))) 

else: 

return self._df(self._jreader.load()) 

 

def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None, 

allowComments=None, allowUnquotedFieldNames=None, allowSingleQuotes=None, 

allowNumericLeadingZero=None, allowBackslashEscapingAnyCharacter=None, 

mode=None, columnNameOfCorruptRecord=None, dateFormat=None, timestampFormat=None, 

multiLine=None, allowUnquotedControlChars=None, lineSep=None, samplingRatio=None, 

dropFieldIfAllNull=None, encoding=None, locale=None, pathGlobFilter=None, 

recursiveFileLookup=None, allowNonNumericNumbers=None, 

modifiedBefore=None, modifiedAfter=None): 

""" 

Loads JSON files and returns the results as a :class:`DataFrame`. 

 

`JSON Lines <http://jsonlines.org/>`_ (newline-delimited JSON) is supported by default. 

For JSON (one record per file), set the ``multiLine`` parameter to ``true``. 

 

If the ``schema`` parameter is not specified, this function goes 

through the input once to determine the input schema. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

path : str, list or :class:`RDD` 

string represents path to the JSON dataset, or a list of paths, 

or RDD of Strings storing JSON objects. 

schema : :class:`pyspark.sql.types.StructType` or str, optional 

an optional :class:`pyspark.sql.types.StructType` for the input schema or 

a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``). 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df1 = spark.read.json('python/test_support/sql/people.json') 

>>> df1.dtypes 

[('age', 'bigint'), ('name', 'string')] 

>>> rdd = sc.textFile('python/test_support/sql/people.json') 

>>> df2 = spark.read.json(rdd) 

>>> df2.dtypes 

[('age', 'bigint'), ('name', 'string')] 

 

""" 

self._set_opts( 

schema=schema, primitivesAsString=primitivesAsString, prefersDecimal=prefersDecimal, 

allowComments=allowComments, allowUnquotedFieldNames=allowUnquotedFieldNames, 

allowSingleQuotes=allowSingleQuotes, allowNumericLeadingZero=allowNumericLeadingZero, 

allowBackslashEscapingAnyCharacter=allowBackslashEscapingAnyCharacter, 

mode=mode, columnNameOfCorruptRecord=columnNameOfCorruptRecord, dateFormat=dateFormat, 

timestampFormat=timestampFormat, multiLine=multiLine, 

allowUnquotedControlChars=allowUnquotedControlChars, lineSep=lineSep, 

samplingRatio=samplingRatio, dropFieldIfAllNull=dropFieldIfAllNull, encoding=encoding, 

locale=locale, pathGlobFilter=pathGlobFilter, recursiveFileLookup=recursiveFileLookup, 

modifiedBefore=modifiedBefore, modifiedAfter=modifiedAfter, 

allowNonNumericNumbers=allowNonNumericNumbers) 

if isinstance(path, str): 

path = [path] 

if type(path) == list: 

return self._df(self._jreader.json(self._spark._sc._jvm.PythonUtils.toSeq(path))) 

230 ↛ 243line 230 didn't jump to line 243, because the condition on line 230 was never false elif isinstance(path, RDD): 

def func(iterator): 

for x in iterator: 

if not isinstance(x, str): 

x = str(x) 

235 ↛ 237line 235 didn't jump to line 237, because the condition on line 235 was never false if isinstance(x, str): 

x = x.encode("utf-8") 

yield x 

keyed = path.mapPartitions(func) 

keyed._bypass_serializer = True 

jrdd = keyed._jrdd.map(self._spark._jvm.BytesToString()) 

return self._df(self._jreader.json(jrdd)) 

else: 

raise TypeError("path can be only string, list or RDD") 

 

def table(self, tableName): 

"""Returns the specified table as a :class:`DataFrame`. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

tableName : str 

string, name of the table. 

 

Examples 

-------- 

>>> df = spark.read.parquet('python/test_support/sql/parquet_partitioned') 

>>> df.createOrReplaceTempView('tmpTable') 

>>> spark.read.table('tmpTable').dtypes 

[('name', 'string'), ('year', 'int'), ('month', 'int'), ('day', 'int')] 

""" 

return self._df(self._jreader.table(tableName)) 

 

def parquet(self, *paths, **options): 

""" 

Loads Parquet files, returning the result as a :class:`DataFrame`. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

paths : str 

 

Other Parameters 

---------------- 

**options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-parquet.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df = spark.read.parquet('python/test_support/sql/parquet_partitioned') 

>>> df.dtypes 

[('name', 'string'), ('year', 'int'), ('month', 'int'), ('day', 'int')] 

""" 

mergeSchema = options.get('mergeSchema', None) 

pathGlobFilter = options.get('pathGlobFilter', None) 

modifiedBefore = options.get('modifiedBefore', None) 

modifiedAfter = options.get('modifiedAfter', None) 

recursiveFileLookup = options.get('recursiveFileLookup', None) 

datetimeRebaseMode = options.get('datetimeRebaseMode', None) 

int96RebaseMode = options.get('int96RebaseMode', None) 

self._set_opts(mergeSchema=mergeSchema, pathGlobFilter=pathGlobFilter, 

recursiveFileLookup=recursiveFileLookup, modifiedBefore=modifiedBefore, 

modifiedAfter=modifiedAfter, datetimeRebaseMode=datetimeRebaseMode, 

int96RebaseMode=int96RebaseMode) 

 

return self._df(self._jreader.parquet(_to_seq(self._spark._sc, paths))) 

 

def text(self, paths, wholetext=False, lineSep=None, pathGlobFilter=None, 

recursiveFileLookup=None, modifiedBefore=None, 

modifiedAfter=None): 

""" 

Loads text files and returns a :class:`DataFrame` whose schema starts with a 

string column named "value", and followed by partitioned columns if there 

are any. 

The text files must be encoded as UTF-8. 

 

By default, each line in the text file is a new row in the resulting DataFrame. 

 

.. versionadded:: 1.6.0 

 

Parameters 

---------- 

paths : str or list 

string, or list of strings, for input path(s). 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-text.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df = spark.read.text('python/test_support/sql/text-test.txt') 

>>> df.collect() 

[Row(value='hello'), Row(value='this')] 

>>> df = spark.read.text('python/test_support/sql/text-test.txt', wholetext=True) 

>>> df.collect() 

[Row(value='hello\\nthis')] 

""" 

self._set_opts( 

wholetext=wholetext, lineSep=lineSep, pathGlobFilter=pathGlobFilter, 

recursiveFileLookup=recursiveFileLookup, modifiedBefore=modifiedBefore, 

modifiedAfter=modifiedAfter) 

 

if isinstance(paths, str): 

paths = [paths] 

return self._df(self._jreader.text(self._spark._sc._jvm.PythonUtils.toSeq(paths))) 

 

def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=None, 

comment=None, header=None, inferSchema=None, ignoreLeadingWhiteSpace=None, 

ignoreTrailingWhiteSpace=None, nullValue=None, nanValue=None, positiveInf=None, 

negativeInf=None, dateFormat=None, timestampFormat=None, maxColumns=None, 

maxCharsPerColumn=None, maxMalformedLogPerPartition=None, mode=None, 

columnNameOfCorruptRecord=None, multiLine=None, charToEscapeQuoteEscaping=None, 

samplingRatio=None, enforceSchema=None, emptyValue=None, locale=None, lineSep=None, 

pathGlobFilter=None, recursiveFileLookup=None, modifiedBefore=None, modifiedAfter=None, 

unescapedQuoteHandling=None): 

r"""Loads a CSV file and returns the result as a :class:`DataFrame`. 

 

This function will go through the input once to determine the input schema if 

``inferSchema`` is enabled. To avoid going through the entire data once, disable 

``inferSchema`` option or specify the schema explicitly using ``schema``. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

path : str or list 

string, or list of strings, for input path(s), 

or RDD of Strings storing CSV rows. 

schema : :class:`pyspark.sql.types.StructType` or str, optional 

an optional :class:`pyspark.sql.types.StructType` for the input schema 

or a DDL-formatted string (For example ``col0 INT, col1 DOUBLE``). 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df = spark.read.csv('python/test_support/sql/ages.csv') 

>>> df.dtypes 

[('_c0', 'string'), ('_c1', 'string')] 

>>> rdd = sc.textFile('python/test_support/sql/ages.csv') 

>>> df2 = spark.read.csv(rdd) 

>>> df2.dtypes 

[('_c0', 'string'), ('_c1', 'string')] 

""" 

self._set_opts( 

schema=schema, sep=sep, encoding=encoding, quote=quote, escape=escape, comment=comment, 

header=header, inferSchema=inferSchema, ignoreLeadingWhiteSpace=ignoreLeadingWhiteSpace, 

ignoreTrailingWhiteSpace=ignoreTrailingWhiteSpace, nullValue=nullValue, 

nanValue=nanValue, positiveInf=positiveInf, negativeInf=negativeInf, 

dateFormat=dateFormat, timestampFormat=timestampFormat, maxColumns=maxColumns, 

maxCharsPerColumn=maxCharsPerColumn, 

maxMalformedLogPerPartition=maxMalformedLogPerPartition, mode=mode, 

columnNameOfCorruptRecord=columnNameOfCorruptRecord, multiLine=multiLine, 

charToEscapeQuoteEscaping=charToEscapeQuoteEscaping, samplingRatio=samplingRatio, 

enforceSchema=enforceSchema, emptyValue=emptyValue, locale=locale, lineSep=lineSep, 

pathGlobFilter=pathGlobFilter, recursiveFileLookup=recursiveFileLookup, 

modifiedBefore=modifiedBefore, modifiedAfter=modifiedAfter, 

unescapedQuoteHandling=unescapedQuoteHandling) 

if isinstance(path, str): 

path = [path] 

if type(path) == list: 

return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path))) 

411 ↛ 431line 411 didn't jump to line 431, because the condition on line 411 was never false elif isinstance(path, RDD): 

def func(iterator): 

for x in iterator: 

414 ↛ 415line 414 didn't jump to line 415, because the condition on line 414 was never true if not isinstance(x, str): 

x = str(x) 

416 ↛ 418line 416 didn't jump to line 418, because the condition on line 416 was never false if isinstance(x, str): 

x = x.encode("utf-8") 

yield x 

keyed = path.mapPartitions(func) 

keyed._bypass_serializer = True 

jrdd = keyed._jrdd.map(self._spark._jvm.BytesToString()) 

# see SPARK-22112 

# There aren't any jvm api for creating a dataframe from rdd storing csv. 

# We can do it through creating a jvm dataset firstly and using the jvm api 

# for creating a dataframe from dataset storing csv. 

jdataset = self._spark._ssql_ctx.createDataset( 

jrdd.rdd(), 

self._spark._jvm.Encoders.STRING()) 

return self._df(self._jreader.csv(jdataset)) 

else: 

raise TypeError("path can be only string, list or RDD") 

 

def orc(self, path, mergeSchema=None, pathGlobFilter=None, recursiveFileLookup=None, 

modifiedBefore=None, modifiedAfter=None): 

"""Loads ORC files, returning the result as a :class:`DataFrame`. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

path : str or list 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-orc.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df = spark.read.orc('python/test_support/sql/orc_partitioned') 

>>> df.dtypes 

[('a', 'bigint'), ('b', 'int'), ('c', 'int')] 

""" 

self._set_opts(mergeSchema=mergeSchema, pathGlobFilter=pathGlobFilter, 

modifiedBefore=modifiedBefore, modifiedAfter=modifiedAfter, 

recursiveFileLookup=recursiveFileLookup) 

if isinstance(path, str): 

path = [path] 

return self._df(self._jreader.orc(_to_seq(self._spark._sc, path))) 

 

def jdbc(self, url, table, column=None, lowerBound=None, upperBound=None, numPartitions=None, 

predicates=None, properties=None): 

""" 

Construct a :class:`DataFrame` representing the database table named ``table`` 

accessible via JDBC URL ``url`` and connection ``properties``. 

 

Partitions of the table will be retrieved in parallel if either ``column`` or 

``predicates`` is specified. ``lowerBound``, ``upperBound`` and ``numPartitions`` 

is needed when ``column`` is specified. 

 

If both ``column`` and ``predicates`` are specified, ``column`` will be used. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

table : str 

the name of the table 

column : str, optional 

alias of ``partitionColumn`` option. Refer to ``partitionColumn`` in 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html#data-source-option>`_ 

in the version you use. 

predicates : list, optional 

a list of expressions suitable for inclusion in WHERE clauses; 

each one defines one partition of the :class:`DataFrame` 

properties : dict, optional 

a dictionary of JDBC database connection arguments. Normally at 

least properties "user" and "password" with their corresponding values. 

For example { 'user' : 'SYSTEM', 'password' : 'mypassword' } 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Notes 

----- 

Don't create too many partitions in parallel on a large cluster; 

otherwise Spark might crash your external database systems. 

 

Returns 

------- 

:class:`DataFrame` 

""" 

if properties is None: 

properties = dict() 

jprop = JavaClass("java.util.Properties", self._spark._sc._gateway._gateway_client)() 

for k in properties: 

jprop.setProperty(k, properties[k]) 

if column is not None: 

assert lowerBound is not None, "lowerBound can not be None when ``column`` is specified" 

assert upperBound is not None, "upperBound can not be None when ``column`` is specified" 

assert numPartitions is not None, \ 

"numPartitions can not be None when ``column`` is specified" 

return self._df(self._jreader.jdbc(url, table, column, int(lowerBound), int(upperBound), 

int(numPartitions), jprop)) 

if predicates is not None: 

gateway = self._spark._sc._gateway 

jpredicates = utils.toJArray(gateway, gateway.jvm.java.lang.String, predicates) 

return self._df(self._jreader.jdbc(url, table, jpredicates, jprop)) 

return self._df(self._jreader.jdbc(url, table, jprop)) 

 

 

class DataFrameWriter(OptionUtils): 

""" 

Interface used to write a :class:`DataFrame` to external storage systems 

(e.g. file systems, key-value stores, etc). Use :attr:`DataFrame.write` 

to access this. 

 

.. versionadded:: 1.4 

""" 

def __init__(self, df): 

self._df = df 

self._spark = df.sql_ctx 

self._jwrite = df._jdf.write() 

 

def _sq(self, jsq): 

from pyspark.sql.streaming import StreamingQuery 

return StreamingQuery(jsq) 

 

def mode(self, saveMode): 

"""Specifies the behavior when data or table already exists. 

 

Options include: 

 

* `append`: Append contents of this :class:`DataFrame` to existing data. 

* `overwrite`: Overwrite existing data. 

* `error` or `errorifexists`: Throw an exception if data already exists. 

* `ignore`: Silently ignore this operation if data already exists. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> df.write.mode('append').parquet(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

# At the JVM side, the default value of mode is already set to "error". 

# So, if the given saveMode is None, we will not call JVM-side's mode method. 

if saveMode is not None: 

self._jwrite = self._jwrite.mode(saveMode) 

return self 

 

def format(self, source): 

"""Specifies the underlying output data source. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

source : str 

string, name of the data source, e.g. 'json', 'parquet'. 

 

Examples 

-------- 

>>> df.write.format('json').save(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

self._jwrite = self._jwrite.format(source) 

return self 

 

@since(1.5) 

def option(self, key, value): 

"""Adds an output option for the underlying data source. 

""" 

self._jwrite = self._jwrite.option(key, to_str(value)) 

return self 

 

@since(1.4) 

def options(self, **options): 

"""Adds output options for the underlying data source. 

""" 

for k in options: 

self._jwrite = self._jwrite.option(k, to_str(options[k])) 

return self 

 

def partitionBy(self, *cols): 

"""Partitions the output by the given columns on the file system. 

 

If specified, the output is laid out on the file system similar 

to Hive's partitioning scheme. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

cols : str or list 

name of columns 

 

Examples 

-------- 

>>> df.write.partitionBy('year', 'month').parquet(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

620 ↛ 621line 620 didn't jump to line 621, because the condition on line 620 was never true if len(cols) == 1 and isinstance(cols[0], (list, tuple)): 

cols = cols[0] 

self._jwrite = self._jwrite.partitionBy(_to_seq(self._spark._sc, cols)) 

return self 

 

def bucketBy(self, numBuckets, col, *cols): 

"""Buckets the output by the given columns. If specified, 

the output is laid out on the file system similar to Hive's bucketing scheme, 

but with a different bucket hash function and is not compatible with Hive's bucketing. 

 

.. versionadded:: 2.3.0 

 

Parameters 

---------- 

numBuckets : int 

the number of buckets to save 

col : str, list or tuple 

a name of a column, or a list of names. 

cols : str 

additional names (optional). If `col` is a list it should be empty. 

 

Notes 

----- 

Applicable for file-based data sources in combination with 

:py:meth:`DataFrameWriter.saveAsTable`. 

 

Examples 

-------- 

>>> (df.write.format('parquet') # doctest: +SKIP 

... .bucketBy(100, 'year', 'month') 

... .mode("overwrite") 

... .saveAsTable('bucketed_table')) 

""" 

653 ↛ 654line 653 didn't jump to line 654, because the condition on line 653 was never true if not isinstance(numBuckets, int): 

raise TypeError("numBuckets should be an int, got {0}.".format(type(numBuckets))) 

 

if isinstance(col, (list, tuple)): 

657 ↛ 658line 657 didn't jump to line 658, because the condition on line 657 was never true if cols: 

raise ValueError("col is a {0} but cols are not empty".format(type(col))) 

 

col, cols = col[0], col[1:] 

 

662 ↛ 663line 662 didn't jump to line 663, because the condition on line 662 was never true if not all(isinstance(c, str) for c in cols) or not(isinstance(col, str)): 

raise TypeError("all names should be `str`") 

 

self._jwrite = self._jwrite.bucketBy(numBuckets, col, _to_seq(self._spark._sc, cols)) 

return self 

 

def sortBy(self, col, *cols): 

"""Sorts the output in each bucket by the given columns on the file system. 

 

.. versionadded:: 2.3.0 

 

Parameters 

---------- 

col : str, tuple or list 

a name of a column, or a list of names. 

cols : str 

additional names (optional). If `col` is a list it should be empty. 

 

Examples 

-------- 

>>> (df.write.format('parquet') # doctest: +SKIP 

... .bucketBy(100, 'year', 'month') 

... .sortBy('day') 

... .mode("overwrite") 

... .saveAsTable('sorted_bucketed_table')) 

""" 

if isinstance(col, (list, tuple)): 

689 ↛ 690line 689 didn't jump to line 690, because the condition on line 689 was never true if cols: 

raise ValueError("col is a {0} but cols are not empty".format(type(col))) 

 

col, cols = col[0], col[1:] 

 

694 ↛ 695line 694 didn't jump to line 695, because the condition on line 694 was never true if not all(isinstance(c, str) for c in cols) or not(isinstance(col, str)): 

raise TypeError("all names should be `str`") 

 

self._jwrite = self._jwrite.sortBy(col, _to_seq(self._spark._sc, cols)) 

return self 

 

def save(self, path=None, format=None, mode=None, partitionBy=None, **options): 

"""Saves the contents of the :class:`DataFrame` to a data source. 

 

The data source is specified by the ``format`` and a set of ``options``. 

If ``format`` is not specified, the default data source configured by 

``spark.sql.sources.default`` will be used. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

path : str, optional 

the path in a Hadoop supported file system 

format : str, optional 

the format used to save 

mode : str, optional 

specifies the behavior of the save operation when data already exists. 

 

* ``append``: Append contents of this :class:`DataFrame` to existing data. 

* ``overwrite``: Overwrite existing data. 

* ``ignore``: Silently ignore this operation if data already exists. 

* ``error`` or ``errorifexists`` (default case): Throw an exception if data already \ 

exists. 

partitionBy : list, optional 

names of partitioning columns 

**options : dict 

all other string options 

 

Examples 

-------- 

>>> df.write.mode("append").save(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

self.mode(mode).options(**options) 

733 ↛ 734line 733 didn't jump to line 734, because the condition on line 733 was never true if partitionBy is not None: 

self.partitionBy(partitionBy) 

if format is not None: 

self.format(format) 

737 ↛ 738line 737 didn't jump to line 738, because the condition on line 737 was never true if path is None: 

self._jwrite.save() 

else: 

self._jwrite.save(path) 

 

@since(1.4) 

def insertInto(self, tableName, overwrite=None): 

"""Inserts the content of the :class:`DataFrame` to the specified table. 

 

It requires that the schema of the :class:`DataFrame` is the same as the 

schema of the table. 

 

Parameters 

---------- 

overwrite : bool, optional 

If true, overwrites existing data. Disabled by default 

 

Notes 

----- 

Unlike :meth:`DataFrameWriter.saveAsTable`, :meth:`DataFrameWriter.insertInto` ignores 

the column names and just uses position-based resolution. 

 

""" 

if overwrite is not None: 

self.mode("overwrite" if overwrite else "append") 

self._jwrite.insertInto(tableName) 

 

def saveAsTable(self, name, format=None, mode=None, partitionBy=None, **options): 

"""Saves the content of the :class:`DataFrame` as the specified table. 

 

In the case the table already exists, behavior of this function depends on the 

save mode, specified by the `mode` function (default to throwing an exception). 

When `mode` is `Overwrite`, the schema of the :class:`DataFrame` does not need to be 

the same as that of the existing table. 

 

* `append`: Append contents of this :class:`DataFrame` to existing data. 

* `overwrite`: Overwrite existing data. 

* `error` or `errorifexists`: Throw an exception if data already exists. 

* `ignore`: Silently ignore this operation if data already exists. 

 

.. versionadded:: 1.4.0 

 

Notes 

----- 

When `mode` is `Append`, if there is an existing table, we will use the format and 

options of the existing table. The column order in the schema of the :class:`DataFrame` 

doesn't need to be same as that of the existing table. Unlike 

:meth:`DataFrameWriter.insertInto`, :meth:`DataFrameWriter.saveAsTable` will use the 

column names to find the correct column positions. 

 

Parameters 

---------- 

name : str 

the table name 

format : str, optional 

the format used to save 

mode : str, optional 

one of `append`, `overwrite`, `error`, `errorifexists`, `ignore` \ 

(default: error) 

partitionBy : str or list 

names of partitioning columns 

**options : dict 

all other string options 

""" 

self.mode(mode).options(**options) 

802 ↛ 803line 802 didn't jump to line 803, because the condition on line 802 was never true if partitionBy is not None: 

self.partitionBy(partitionBy) 

if format is not None: 

self.format(format) 

self._jwrite.saveAsTable(name) 

 

def json(self, path, mode=None, compression=None, dateFormat=None, timestampFormat=None, 

lineSep=None, encoding=None, ignoreNullFields=None): 

"""Saves the content of the :class:`DataFrame` in JSON format 

(`JSON Lines text format or newline-delimited JSON <http://jsonlines.org/>`_) at the 

specified path. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

path : str 

the path in any Hadoop supported file system 

mode : str, optional 

specifies the behavior of the save operation when data already exists. 

 

* ``append``: Append contents of this :class:`DataFrame` to existing data. 

* ``overwrite``: Overwrite existing data. 

* ``ignore``: Silently ignore this operation if data already exists. 

* ``error`` or ``errorifexists`` (default case): Throw an exception if data already \ 

exists. 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df.write.json(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

self.mode(mode) 

self._set_opts( 

compression=compression, dateFormat=dateFormat, timestampFormat=timestampFormat, 

lineSep=lineSep, encoding=encoding, ignoreNullFields=ignoreNullFields) 

self._jwrite.json(path) 

 

def parquet(self, path, mode=None, partitionBy=None, compression=None): 

"""Saves the content of the :class:`DataFrame` in Parquet format at the specified path. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

path : str 

the path in any Hadoop supported file system 

mode : str, optional 

specifies the behavior of the save operation when data already exists. 

 

* ``append``: Append contents of this :class:`DataFrame` to existing data. 

* ``overwrite``: Overwrite existing data. 

* ``ignore``: Silently ignore this operation if data already exists. 

* ``error`` or ``errorifexists`` (default case): Throw an exception if data already \ 

exists. 

partitionBy : str or list, optional 

names of partitioning columns 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-parquet.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df.write.parquet(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

self.mode(mode) 

882 ↛ 883line 882 didn't jump to line 883, because the condition on line 882 was never true if partitionBy is not None: 

self.partitionBy(partitionBy) 

self._set_opts(compression=compression) 

self._jwrite.parquet(path) 

 

def text(self, path, compression=None, lineSep=None): 

"""Saves the content of the DataFrame in a text file at the specified path. 

The text files will be encoded as UTF-8. 

 

.. versionadded:: 1.6.0 

 

Parameters 

---------- 

path : str 

the path in any Hadoop supported file system 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-text.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

The DataFrame must have only one column that is of string type. 

Each row becomes a new line in the output file. 

""" 

self._set_opts(compression=compression, lineSep=lineSep) 

self._jwrite.text(path) 

 

def csv(self, path, mode=None, compression=None, sep=None, quote=None, escape=None, 

header=None, nullValue=None, escapeQuotes=None, quoteAll=None, dateFormat=None, 

timestampFormat=None, ignoreLeadingWhiteSpace=None, ignoreTrailingWhiteSpace=None, 

charToEscapeQuoteEscaping=None, encoding=None, emptyValue=None, lineSep=None): 

r"""Saves the content of the :class:`DataFrame` in CSV format at the specified path. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

path : str 

the path in any Hadoop supported file system 

mode : str, optional 

specifies the behavior of the save operation when data already exists. 

 

* ``append``: Append contents of this :class:`DataFrame` to existing data. 

* ``overwrite``: Overwrite existing data. 

* ``ignore``: Silently ignore this operation if data already exists. 

* ``error`` or ``errorifexists`` (default case): Throw an exception if data already \ 

exists. 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> df.write.csv(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

self.mode(mode) 

self._set_opts(compression=compression, sep=sep, quote=quote, escape=escape, header=header, 

nullValue=nullValue, escapeQuotes=escapeQuotes, quoteAll=quoteAll, 

dateFormat=dateFormat, timestampFormat=timestampFormat, 

ignoreLeadingWhiteSpace=ignoreLeadingWhiteSpace, 

ignoreTrailingWhiteSpace=ignoreTrailingWhiteSpace, 

charToEscapeQuoteEscaping=charToEscapeQuoteEscaping, 

encoding=encoding, emptyValue=emptyValue, lineSep=lineSep) 

self._jwrite.csv(path) 

 

def orc(self, path, mode=None, partitionBy=None, compression=None): 

"""Saves the content of the :class:`DataFrame` in ORC format at the specified path. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

path : str 

the path in any Hadoop supported file system 

mode : str, optional 

specifies the behavior of the save operation when data already exists. 

 

* ``append``: Append contents of this :class:`DataFrame` to existing data. 

* ``overwrite``: Overwrite existing data. 

* ``ignore``: Silently ignore this operation if data already exists. 

* ``error`` or ``errorifexists`` (default case): Throw an exception if data already \ 

exists. 

partitionBy : str or list, optional 

names of partitioning columns 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-orc.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Examples 

-------- 

>>> orc_df = spark.read.orc('python/test_support/sql/orc_partitioned') 

>>> orc_df.write.orc(os.path.join(tempfile.mkdtemp(), 'data')) 

""" 

self.mode(mode) 

992 ↛ 993line 992 didn't jump to line 993, because the condition on line 992 was never true if partitionBy is not None: 

self.partitionBy(partitionBy) 

self._set_opts(compression=compression) 

self._jwrite.orc(path) 

 

def jdbc(self, url, table, mode=None, properties=None): 

"""Saves the content of the :class:`DataFrame` to an external database table via JDBC. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

table : str 

Name of the table in the external database. 

mode : str, optional 

specifies the behavior of the save operation when data already exists. 

 

* ``append``: Append contents of this :class:`DataFrame` to existing data. 

* ``overwrite``: Overwrite existing data. 

* ``ignore``: Silently ignore this operation if data already exists. 

* ``error`` or ``errorifexists`` (default case): Throw an exception if data already \ 

exists. 

properties : dict 

a dictionary of JDBC database connection arguments. Normally at 

least properties "user" and "password" with their corresponding values. 

For example { 'user' : 'SYSTEM', 'password' : 'mypassword' } 

 

Other Parameters 

---------------- 

Extra options 

For the extra options, refer to 

`Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html#data-source-option>`_ 

in the version you use. 

 

.. # noqa 

 

Notes 

----- 

Don't create too many partitions in parallel on a large cluster; 

otherwise Spark might crash your external database systems. 

""" 

if properties is None: 

properties = dict() 

jprop = JavaClass("java.util.Properties", self._spark._sc._gateway._gateway_client)() 

for k in properties: 

jprop.setProperty(k, properties[k]) 

self.mode(mode)._jwrite.jdbc(url, table, jprop) 

 

 

class DataFrameWriterV2(object): 

""" 

Interface used to write a class:`pyspark.sql.dataframe.DataFrame` 

to external storage using the v2 API. 

 

.. versionadded:: 3.1.0 

""" 

 

def __init__(self, df, table): 

self._df = df 

self._spark = df.sql_ctx 

self._jwriter = df._jdf.writeTo(table) 

 

@since(3.1) 

def using(self, provider): 

""" 

Specifies a provider for the underlying output data source. 

Spark's default catalog supports "parquet", "json", etc. 

""" 

self._jwriter.using(provider) 

return self 

 

@since(3.1) 

def option(self, key, value): 

""" 

Add a write option. 

""" 

self._jwriter.option(key, to_str(value)) 

return self 

 

@since(3.1) 

def options(self, **options): 

""" 

Add write options. 

""" 

options = {k: to_str(v) for k, v in options.items()} 

self._jwriter.options(options) 

return self 

 

@since(3.1) 

def tableProperty(self, property, value): 

""" 

Add table property. 

""" 

self._jwriter.tableProperty(property, value) 

return self 

 

@since(3.1) 

def partitionedBy(self, col, *cols): 

""" 

Partition the output table created by `create`, `createOrReplace`, or `replace` using 

the given columns or transforms. 

 

When specified, the table data will be stored by these values for efficient reads. 

 

For example, when a table is partitioned by day, it may be stored 

in a directory layout like: 

 

* `table/day=2019-06-01/` 

* `table/day=2019-06-02/` 

 

Partitioning is one of the most widely used techniques to optimize physical data layout. 

It provides a coarse-grained index for skipping unnecessary data reads when queries have 

predicates on the partitioned columns. In order for partitioning to work well, the number 

of distinct values in each column should typically be less than tens of thousands. 

 

`col` and `cols` support only the following functions: 

 

* :py:func:`pyspark.sql.functions.years` 

* :py:func:`pyspark.sql.functions.months` 

* :py:func:`pyspark.sql.functions.days` 

* :py:func:`pyspark.sql.functions.hours` 

* :py:func:`pyspark.sql.functions.bucket` 

 

""" 

col = _to_java_column(col) 

cols = _to_seq(self._spark._sc, [_to_java_column(c) for c in cols]) 

return self 

 

@since(3.1) 

def create(self): 

""" 

Create a new table from the contents of the data frame. 

 

The new table's schema, partition layout, properties, and other configuration will be 

based on the configuration set on this writer. 

""" 

self._jwriter.create() 

 

@since(3.1) 

def replace(self): 

""" 

Replace an existing table with the contents of the data frame. 

 

The existing table's schema, partition layout, properties, and other configuration will be 

replaced with the contents of the data frame and the configuration set on this writer. 

""" 

self._jwriter.replace() 

 

@since(3.1) 

def createOrReplace(self): 

""" 

Create a new table or replace an existing table with the contents of the data frame. 

 

The output table's schema, partition layout, properties, 

and other configuration will be based on the contents of the data frame 

and the configuration set on this writer. 

If the table exists, its configuration and data will be replaced. 

""" 

self._jwriter.createOrReplace() 

 

@since(3.1) 

def append(self): 

""" 

Append the contents of the data frame to the output table. 

""" 

self._jwriter.append() 

 

@since(3.1) 

def overwrite(self, condition): 

""" 

Overwrite rows matching the given filter condition with the contents of the data frame in 

the output table. 

""" 

self._jwriter.overwrite(condition) 

 

@since(3.1) 

def overwritePartitions(self): 

""" 

Overwrite all partition for which the data frame contains at least one row with the contents 

of the data frame in the output table. 

 

This operation is equivalent to Hive's `INSERT OVERWRITE ... PARTITION`, which replaces 

partitions dynamically depending on the contents of the data frame. 

""" 

self._jwriter.overwritePartitions() 

 

 

def _test(): 

import doctest 

import os 

import tempfile 

import py4j 

from pyspark.context import SparkContext 

from pyspark.sql import SparkSession 

import pyspark.sql.readwriter 

 

os.chdir(os.environ["SPARK_HOME"]) 

 

globs = pyspark.sql.readwriter.__dict__.copy() 

sc = SparkContext('local[4]', 'PythonTest') 

try: 

spark = SparkSession.builder.getOrCreate() 

except py4j.protocol.Py4JError: 

spark = SparkSession(sc) 

 

globs['tempfile'] = tempfile 

globs['os'] = os 

globs['sc'] = sc 

globs['spark'] = spark 

globs['df'] = spark.read.parquet('python/test_support/sql/parquet_partitioned') 

(failure_count, test_count) = doctest.testmod( 

pyspark.sql.readwriter, globs=globs, 

optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) 

sc.stop() 

1206 ↛ 1207line 1206 didn't jump to line 1207, because the condition on line 1206 was never true if failure_count: 

sys.exit(-1) 

 

 

if __name__ == "__main__": 

_test()