Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #
Serializers for PyArrow and pandas conversions. See `pyspark.serializers` for more details. """
""" Deserialize a stream of batches followed by batch order information. Used in PandasConversionMixin._collect_as_arrow() after invoking Dataset.collectAsArrowToPython() in the JVM. """
self.serializer = ArrowStreamSerializer()
return self.serializer.dump_stream(iterator, stream)
""" Load a stream of un-ordered Arrow RecordBatches, where the last iteration yields a list of indices that can be used to put the RecordBatches in the correct order. """ # load the batches for batch in self.serializer.load_stream(stream): yield batch
# load the batch order indices or propagate any error that occurred in the JVM num = read_int(stream) if num == -1: error_msg = UTF8Deserializer().loads(stream) raise RuntimeError("An error occurred while calling " "ArrowCollectSerializer.load_stream: {}".format(error_msg)) batch_order = [] for i in range(num): index = read_int(stream) batch_order.append(index) yield batch_order
return "ArrowCollectSerializer(%s)" % self.serializer
""" Serializes Arrow record batches as a stream. """
import pyarrow as pa writer = None try: for batch in iterator: if writer is None: writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) finally: if writer is not None: writer.close()
import pyarrow as pa reader = pa.ipc.open_stream(stream) for batch in reader: yield batch
return "ArrowStreamSerializer"
""" Serializes Pandas.Series as Arrow data with Arrow streaming format.
Parameters ---------- timezone : str A timezone to respect when handling timestamp values safecheck : bool If True, conversion from Arrow to Pandas checks for overflow/truncation assign_cols_by_name : bool If True, then Pandas DataFrames will get columns by name """
super(ArrowStreamPandasSerializer, self).__init__() self._timezone = timezone self._safecheck = safecheck self._assign_cols_by_name = assign_cols_by_name
from pyspark.sql.pandas.types import _check_series_localize_timestamps, \ _convert_map_items_to_dict import pyarrow
# If the given column is a date type column, creates a series of datetime.date directly # instead of creating datetime64[ns] as intermediate data to avoid overflow caused by # datetime64[ns] type handling. s = arrow_column.to_pandas(date_as_object=True)
if pyarrow.types.is_timestamp(arrow_column.type): return _check_series_localize_timestamps(s, self._timezone) elif pyarrow.types.is_map(arrow_column.type): return _convert_map_items_to_dict(s) else: return s
""" Create an Arrow record batch from the given pandas.Series or list of Series, with optional type.
Parameters ---------- series : pandas.Series or list A single series, list of series, or list of (series, arrow_type)
Returns ------- pyarrow.RecordBatch Arrow RecordBatch """ import pandas as pd import pyarrow as pa from pyspark.sql.pandas.types import _check_series_convert_timestamps_internal, \ _convert_dict_to_map_items from pandas.api.types import is_categorical_dtype # Make input conform to [(series1, type1), (series2, type2), ...] if not isinstance(series, (list, tuple)) or \ (len(series) == 2 and isinstance(series[1], pa.DataType)): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series)
def create_array(s, t): mask = s.isnull() # Ensure timestamp series are in expected form for Spark internal representation if t is not None and pa.types.is_timestamp(t): s = _check_series_convert_timestamps_internal(s, self._timezone) elif t is not None and pa.types.is_map(t): s = _convert_dict_to_map_items(s) elif is_categorical_dtype(s.dtype): # Note: This can be removed once minimum pyarrow version is >= 0.16.1 s = s.astype(s.dtypes.categories.dtype) try: array = pa.Array.from_pandas(s, mask=mask, type=t, safe=self._safecheck) except ValueError as e: if self._safecheck: error_msg = "Exception thrown when converting pandas.Series (%s) to " + \ "Arrow Array (%s). It can be caused by overflows or other " + \ "unsafe conversions warned by Arrow. Arrow safe type check " + \ "can be disabled by using SQL config " + \ "`spark.sql.execution.pandas.convertToArrowArraySafely`." raise ValueError(error_msg % (s.dtype, t)) from e else: raise e return array
arrs = [] for s, t in series: if t is not None and pa.types.is_struct(t): if not isinstance(s, pd.DataFrame): raise ValueError("A field of type StructType expects a pandas.DataFrame, " "but got: %s" % str(type(s)))
# Input partition and result pandas.DataFrame empty, make empty Arrays with struct if len(s) == 0 and len(s.columns) == 0: arrs_names = [(pa.array([], type=field.type), field.name) for field in t] # Assign result columns by schema name if user labeled with strings elif self._assign_cols_by_name and any(isinstance(name, str) for name in s.columns): arrs_names = [(create_array(s[field.name], field.type), field.name) for field in t] # Assign result columns by position else: arrs_names = [(create_array(s[s.columns[i]], field.type), field.name) for i, field in enumerate(t)]
struct_arrs, struct_names = zip(*arrs_names) arrs.append(pa.StructArray.from_arrays(struct_arrs, struct_names)) else: arrs.append(create_array(s, t))
return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in range(len(arrs))])
""" Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to. """ batches = (self._create_batch(series) for series in iterator) super(ArrowStreamPandasSerializer, self).dump_stream(batches, stream)
""" Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series. """ batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) import pyarrow as pa for batch in batches: yield [self.arrow_to_pandas(c) for c in pa.Table.from_batches([batch]).itercolumns()]
return "ArrowStreamPandasSerializer"
""" Serializer used by Python worker to evaluate Pandas UDFs """
super(ArrowStreamPandasUDFSerializer, self) \ .__init__(timezone, safecheck, assign_cols_by_name) self._df_for_struct = df_for_struct
import pyarrow.types as types
if self._df_for_struct and types.is_struct(arrow_column.type): import pandas as pd series = [super(ArrowStreamPandasUDFSerializer, self).arrow_to_pandas(column) .rename(field.name) for column, field in zip(arrow_column.flatten(), arrow_column.type)] s = pd.concat(series, axis=1) else: s = super(ArrowStreamPandasUDFSerializer, self).arrow_to_pandas(arrow_column) return s
""" Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. This should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts. """
def init_stream_yield_batches(): should_write_start_length = True for series in iterator: batch = self._create_batch(series) if should_write_start_length: write_int(SpecialLengths.START_ARROW_STREAM, stream) should_write_start_length = False yield batch
return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream)
return "ArrowStreamPandasUDFSerializer"
""" Deserialize Cogrouped ArrowRecordBatches to a tuple of Arrow tables and yield as two lists of pandas.Series. """ import pyarrow as pa dataframes_in_group = None
while dataframes_in_group is None or dataframes_in_group > 0: dataframes_in_group = read_int(stream)
if dataframes_in_group == 2: batch1 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] batch2 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] yield ( [self.arrow_to_pandas(c) for c in pa.Table.from_batches(batch1).itercolumns()], [self.arrow_to_pandas(c) for c in pa.Table.from_batches(batch2).itercolumns()] )
elif dataframes_in_group != 0: raise ValueError( 'Invalid number of pandas.DataFrames in group {0}'.format(dataframes_in_group)) |