Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import sys 

import warnings 

 

from pyspark import since, _NoValue 

from pyspark.sql.session import _monkey_patch_RDD, SparkSession 

from pyspark.sql.dataframe import DataFrame 

from pyspark.sql.readwriter import DataFrameReader 

from pyspark.sql.streaming import DataStreamReader 

from pyspark.sql.udf import UDFRegistration # noqa: F401 

from pyspark.sql.utils import install_exception_handler 

 

__all__ = ["SQLContext", "HiveContext"] 

 

 

class SQLContext(object): 

"""The entry point for working with structured data (rows and columns) in Spark, in Spark 1.x. 

 

As of Spark 2.0, this is replaced by :class:`SparkSession`. However, we are keeping the class 

here for backward compatibility. 

 

A SQLContext can be used create :class:`DataFrame`, register :class:`DataFrame` as 

tables, execute SQL over tables, cache tables, and read parquet files. 

 

.. deprecated:: 3.0.0 

Use :func:`SparkSession.builder.getOrCreate()` instead. 

 

Parameters 

---------- 

sparkContext : :class:`SparkContext` 

The :class:`SparkContext` backing this SQLContext. 

sparkSession : :class:`SparkSession` 

The :class:`SparkSession` around which this SQLContext wraps. 

jsqlContext : optional 

An optional JVM Scala SQLContext. If set, we do not instantiate a new 

SQLContext in the JVM, instead we make all calls to this object. 

This is only for internal. 

 

Examples 

-------- 

>>> from datetime import datetime 

>>> from pyspark.sql import Row 

>>> sqlContext = SQLContext(sc) 

>>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, 

... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), 

... time=datetime(2014, 8, 1, 14, 1, 5))]) 

>>> df = allTypes.toDF() 

>>> df.createOrReplaceTempView("allTypes") 

>>> sqlContext.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' 

... 'from allTypes where b and i > 0').collect() 

[Row((i + 1)=2, (d + 1)=2.0, (NOT b)=False, list[1]=2, \ 

dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] 

>>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() 

[(1, 'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] 

""" 

 

_instantiatedContext = None 

 

def __init__(self, sparkContext, sparkSession=None, jsqlContext=None): 

if sparkSession is None: 

warnings.warn( 

"Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.", 

FutureWarning 

) 

 

self._sc = sparkContext 

self._jsc = self._sc._jsc 

self._jvm = self._sc._jvm 

if sparkSession is None: 

sparkSession = SparkSession.builder.getOrCreate() 

if jsqlContext is None: 

jsqlContext = sparkSession._jwrapped 

self.sparkSession = sparkSession 

self._jsqlContext = jsqlContext 

_monkey_patch_RDD(self.sparkSession) 

install_exception_handler() 

if (SQLContext._instantiatedContext is None 

or SQLContext._instantiatedContext._sc._jsc is None): 

SQLContext._instantiatedContext = self 

 

@property 

def _ssql_ctx(self): 

"""Accessor for the JVM Spark SQL context. 

 

Subclasses can override this property to provide their own 

JVM Contexts. 

""" 

return self._jsqlContext 

 

@property 

def _conf(self): 

"""Accessor for the JVM SQL-specific configurations""" 

return self.sparkSession._jsparkSession.sessionState().conf() 

 

@classmethod 

def getOrCreate(cls, sc): 

""" 

Get the existing SQLContext or create a new one with given SparkContext. 

 

.. versionadded:: 1.6.0 

 

.. deprecated:: 3.0.0 

Use :func:`SparkSession.builder.getOrCreate()` instead. 

 

Parameters 

---------- 

sc : :class:`SparkContext` 

""" 

warnings.warn( 

"Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.", 

FutureWarning 

) 

 

if (cls._instantiatedContext is None 

or SQLContext._instantiatedContext._sc._jsc is None): 

jsqlContext = sc._jvm.SparkSession.builder().sparkContext( 

sc._jsc.sc()).getOrCreate().sqlContext() 

sparkSession = SparkSession(sc, jsqlContext.sparkSession()) 

cls(sc, sparkSession, jsqlContext) 

return cls._instantiatedContext 

 

def newSession(self): 

""" 

Returns a new SQLContext as new session, that has separate SQLConf, 

registered temporary views and UDFs, but shared SparkContext and 

table cache. 

 

.. versionadded:: 1.6.0 

""" 

return self.__class__(self._sc, self.sparkSession.newSession()) 

 

def setConf(self, key, value): 

"""Sets the given Spark SQL configuration property. 

 

.. versionadded:: 1.3.0 

""" 

self.sparkSession.conf.set(key, value) 

 

def getConf(self, key, defaultValue=_NoValue): 

"""Returns the value of Spark SQL configuration property for the given key. 

 

If the key is not set and defaultValue is set, return 

defaultValue. If the key is not set and defaultValue is not set, return 

the system default value. 

 

.. versionadded:: 1.3.0 

 

Examples 

-------- 

>>> sqlContext.getConf("spark.sql.shuffle.partitions") 

'200' 

>>> sqlContext.getConf("spark.sql.shuffle.partitions", "10") 

'10' 

>>> sqlContext.setConf("spark.sql.shuffle.partitions", "50") 

>>> sqlContext.getConf("spark.sql.shuffle.partitions", "10") 

'50' 

""" 

return self.sparkSession.conf.get(key, defaultValue) 

 

@property 

def udf(self): 

"""Returns a :class:`UDFRegistration` for UDF registration. 

 

.. versionadded:: 1.3.1 

 

Returns 

------- 

:class:`UDFRegistration` 

""" 

return self.sparkSession.udf 

 

def range(self, start, end=None, step=1, numPartitions=None): 

""" 

Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named 

``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with 

step value ``step``. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

start : int 

the start value 

end : int, optional 

the end value (exclusive) 

step : int, optional 

the incremental step (default: 1) 

numPartitions : int, optional 

the number of partitions of the DataFrame 

 

Returns 

------- 

:class:`DataFrame` 

 

Examples 

-------- 

>>> sqlContext.range(1, 7, 2).collect() 

[Row(id=1), Row(id=3), Row(id=5)] 

 

If only one argument is specified, it will be used as the end value. 

 

>>> sqlContext.range(3).collect() 

[Row(id=0), Row(id=1), Row(id=2)] 

""" 

return self.sparkSession.range(start, end, step, numPartitions) 

 

def registerFunction(self, name, f, returnType=None): 

"""An alias for :func:`spark.udf.register`. 

See :meth:`pyspark.sql.UDFRegistration.register`. 

 

.. versionadded:: 1.2.0 

 

.. deprecated:: 2.3.0 

Use :func:`spark.udf.register` instead. 

""" 

warnings.warn( 

"Deprecated in 2.3.0. Use spark.udf.register instead.", 

FutureWarning 

) 

return self.sparkSession.udf.register(name, f, returnType) 

 

def registerJavaFunction(self, name, javaClassName, returnType=None): 

"""An alias for :func:`spark.udf.registerJavaFunction`. 

See :meth:`pyspark.sql.UDFRegistration.registerJavaFunction`. 

 

.. versionadded:: 2.1.0 

 

.. deprecated:: 2.3.0 

Use :func:`spark.udf.registerJavaFunction` instead. 

""" 

warnings.warn( 

"Deprecated in 2.3.0. Use spark.udf.registerJavaFunction instead.", 

FutureWarning 

) 

return self.sparkSession.udf.registerJavaFunction(name, javaClassName, returnType) 

 

# TODO(andrew): delete this once we refactor things to take in SparkSession 

def _inferSchema(self, rdd, samplingRatio=None): 

""" 

Infer schema from an RDD of Row or tuple. 

 

Parameters 

---------- 

rdd : :class:`RDD` 

an RDD of Row or tuple 

samplingRatio : float, optional 

sampling ratio, or no sampling (default) 

 

Returns 

------- 

:class:`pyspark.sql.types.StructType` 

""" 

return self.sparkSession._inferSchema(rdd, samplingRatio) 

 

def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): 

""" 

Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. 

 

When ``schema`` is a list of column names, the type of each column 

will be inferred from ``data``. 

 

When ``schema`` is ``None``, it will try to infer the schema (column names and types) 

from ``data``, which should be an RDD of :class:`Row`, 

or :class:`namedtuple`, or :class:`dict`. 

 

When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string it must match 

the real data, or an exception will be thrown at runtime. If the given schema is not 

:class:`pyspark.sql.types.StructType`, it will be wrapped into a 

:class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", 

each record will also be wrapped into a tuple, which can be converted to row later. 

 

If schema inference is needed, ``samplingRatio`` is used to determined the ratio of 

rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. 

 

.. versionadded:: 1.3.0 

 

.. versionchanged:: 2.0.0 

The ``schema`` parameter can be a :class:`pyspark.sql.types.DataType` or a 

datatype string after 2.0. 

If it's not a :class:`pyspark.sql.types.StructType`, it will be wrapped into a 

:class:`pyspark.sql.types.StructType` and each record will also be wrapped into a tuple. 

 

.. versionchanged:: 2.1.0 

Added verifySchema. 

 

Parameters 

---------- 

data : :class:`RDD` or iterable 

an RDD of any kind of SQL data representation (:class:`Row`, 

:class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or 

:class:`pandas.DataFrame`. 

schema : :class:`pyspark.sql.types.DataType`, str or list, optional 

a :class:`pyspark.sql.types.DataType` or a datatype string or a list of 

column names, default is None. The data type string format equals to 

:class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can 

omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use 

``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. 

We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. 

samplingRatio : float, optional 

the sample ratio of rows used for inferring 

verifySchema : bool, optional 

verify data types of every row against schema. Enabled by default. 

 

Returns 

------- 

:class:`DataFrame` 

 

Examples 

-------- 

>>> l = [('Alice', 1)] 

>>> sqlContext.createDataFrame(l).collect() 

[Row(_1='Alice', _2=1)] 

>>> sqlContext.createDataFrame(l, ['name', 'age']).collect() 

[Row(name='Alice', age=1)] 

 

>>> d = [{'name': 'Alice', 'age': 1}] 

>>> sqlContext.createDataFrame(d).collect() 

[Row(age=1, name='Alice')] 

 

>>> rdd = sc.parallelize(l) 

>>> sqlContext.createDataFrame(rdd).collect() 

[Row(_1='Alice', _2=1)] 

>>> df = sqlContext.createDataFrame(rdd, ['name', 'age']) 

>>> df.collect() 

[Row(name='Alice', age=1)] 

 

>>> from pyspark.sql import Row 

>>> Person = Row('name', 'age') 

>>> person = rdd.map(lambda r: Person(*r)) 

>>> df2 = sqlContext.createDataFrame(person) 

>>> df2.collect() 

[Row(name='Alice', age=1)] 

 

>>> from pyspark.sql.types import * 

>>> schema = StructType([ 

... StructField("name", StringType(), True), 

... StructField("age", IntegerType(), True)]) 

>>> df3 = sqlContext.createDataFrame(rdd, schema) 

>>> df3.collect() 

[Row(name='Alice', age=1)] 

 

>>> sqlContext.createDataFrame(df.toPandas()).collect() # doctest: +SKIP 

[Row(name='Alice', age=1)] 

>>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP 

[Row(0=1, 1=2)] 

 

>>> sqlContext.createDataFrame(rdd, "a: string, b: int").collect() 

[Row(a='Alice', b=1)] 

>>> rdd = rdd.map(lambda row: row[1]) 

>>> sqlContext.createDataFrame(rdd, "int").collect() 

[Row(value=1)] 

>>> sqlContext.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL 

Traceback (most recent call last): 

... 

Py4JJavaError: ... 

""" 

return self.sparkSession.createDataFrame(data, schema, samplingRatio, verifySchema) 

 

def registerDataFrameAsTable(self, df, tableName): 

"""Registers the given :class:`DataFrame` as a temporary table in the catalog. 

 

Temporary tables exist only during the lifetime of this instance of :class:`SQLContext`. 

 

.. versionadded:: 1.3.0 

 

Examples 

-------- 

>>> sqlContext.registerDataFrameAsTable(df, "table1") 

""" 

df.createOrReplaceTempView(tableName) 

 

def dropTempTable(self, tableName): 

""" Remove the temporary table from catalog. 

 

.. versionadded:: 1.6.0 

 

Examples 

-------- 

>>> sqlContext.registerDataFrameAsTable(df, "table1") 

>>> sqlContext.dropTempTable("table1") 

""" 

self.sparkSession.catalog.dropTempView(tableName) 

 

def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): 

"""Creates an external table based on the dataset in a data source. 

 

It returns the DataFrame associated with the external table. 

 

The data source is specified by the ``source`` and a set of ``options``. 

If ``source`` is not specified, the default data source configured by 

``spark.sql.sources.default`` will be used. 

 

Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and 

created external table. 

 

.. versionadded:: 1.3.0 

 

Returns 

------- 

:class:`DataFrame` 

""" 

return self.sparkSession.catalog.createExternalTable( 

tableName, path, source, schema, **options) 

 

def sql(self, sqlQuery): 

"""Returns a :class:`DataFrame` representing the result of the given query. 

 

.. versionadded:: 1.0.0 

 

Returns 

------- 

:class:`DataFrame` 

 

Examples 

-------- 

>>> sqlContext.registerDataFrameAsTable(df, "table1") 

>>> df2 = sqlContext.sql("SELECT field1 AS f1, field2 as f2 from table1") 

>>> df2.collect() 

[Row(f1=1, f2='row1'), Row(f1=2, f2='row2'), Row(f1=3, f2='row3')] 

""" 

return self.sparkSession.sql(sqlQuery) 

 

def table(self, tableName): 

"""Returns the specified table or view as a :class:`DataFrame`. 

 

.. versionadded:: 1.0.0 

 

Returns 

------- 

:class:`DataFrame` 

 

Examples 

-------- 

>>> sqlContext.registerDataFrameAsTable(df, "table1") 

>>> df2 = sqlContext.table("table1") 

>>> sorted(df.collect()) == sorted(df2.collect()) 

True 

""" 

return self.sparkSession.table(tableName) 

 

def tables(self, dbName=None): 

"""Returns a :class:`DataFrame` containing names of tables in the given database. 

 

If ``dbName`` is not specified, the current database will be used. 

 

The returned DataFrame has two columns: ``tableName`` and ``isTemporary`` 

(a column with :class:`BooleanType` indicating if a table is a temporary one or not). 

 

.. versionadded:: 1.3.0 

 

Parameters 

---------- 

dbName: str, optional 

name of the database to use. 

 

Returns 

------- 

:class:`DataFrame` 

 

Examples 

-------- 

>>> sqlContext.registerDataFrameAsTable(df, "table1") 

>>> df2 = sqlContext.tables() 

>>> df2.filter("tableName = 'table1'").first() 

Row(namespace='', tableName='table1', isTemporary=True) 

""" 

483 ↛ 486line 483 didn't jump to line 486, because the condition on line 483 was never false if dbName is None: 

return DataFrame(self._ssql_ctx.tables(), self) 

else: 

return DataFrame(self._ssql_ctx.tables(dbName), self) 

 

def tableNames(self, dbName=None): 

"""Returns a list of names of tables in the database ``dbName``. 

 

.. versionadded:: 1.3.0 

 

Parameters 

---------- 

dbName: str 

name of the database to use. Default to the current database. 

 

Returns 

------- 

list 

list of table names, in string 

 

>>> sqlContext.registerDataFrameAsTable(df, "table1") 

>>> "table1" in sqlContext.tableNames() 

True 

>>> "table1" in sqlContext.tableNames("default") 

True 

""" 

if dbName is None: 

return [name for name in self._ssql_ctx.tableNames()] 

else: 

return [name for name in self._ssql_ctx.tableNames(dbName)] 

 

@since(1.0) 

def cacheTable(self, tableName): 

"""Caches the specified table in-memory.""" 

self._ssql_ctx.cacheTable(tableName) 

 

@since(1.0) 

def uncacheTable(self, tableName): 

"""Removes the specified table from the in-memory cache.""" 

self._ssql_ctx.uncacheTable(tableName) 

 

@since(1.3) 

def clearCache(self): 

"""Removes all cached tables from the in-memory cache. """ 

self._ssql_ctx.clearCache() 

 

@property 

def read(self): 

""" 

Returns a :class:`DataFrameReader` that can be used to read data 

in as a :class:`DataFrame`. 

 

.. versionadded:: 1.4.0 

 

Returns 

------- 

:class:`DataFrameReader` 

""" 

return DataFrameReader(self) 

 

@property 

def readStream(self): 

""" 

Returns a :class:`DataStreamReader` that can be used to read data streams 

as a streaming :class:`DataFrame`. 

 

.. versionadded:: 2.0.0 

 

Notes 

----- 

This API is evolving. 

 

Returns 

------- 

:class:`DataStreamReader` 

 

>>> text_sdf = sqlContext.readStream.text(tempfile.mkdtemp()) 

>>> text_sdf.isStreaming 

True 

""" 

return DataStreamReader(self) 

 

@property 

def streams(self): 

"""Returns a :class:`StreamingQueryManager` that allows managing all the 

:class:`StreamingQuery` StreamingQueries active on `this` context. 

 

.. versionadded:: 2.0.0 

 

Notes 

----- 

This API is evolving. 

""" 

from pyspark.sql.streaming import StreamingQueryManager 

return StreamingQueryManager(self._ssql_ctx.streams()) 

 

 

class HiveContext(SQLContext): 

"""A variant of Spark SQL that integrates with data stored in Hive. 

 

Configuration for Hive is read from ``hive-site.xml`` on the classpath. 

It supports running both SQL and HiveQL commands. 

 

.. deprecated:: 2.0.0 

Use SparkSession.builder.enableHiveSupport().getOrCreate(). 

 

Parameters 

---------- 

sparkContext : :class:`SparkContext` 

The SparkContext to wrap. 

jhiveContext : optional 

An optional JVM Scala HiveContext. If set, we do not instantiate a new 

:class:`HiveContext` in the JVM, instead we make all calls to this object. 

This is only for internal use. 

 

""" 

 

def __init__(self, sparkContext, jhiveContext=None): 

warnings.warn( 

"HiveContext is deprecated in Spark 2.0.0. Please use " + 

"SparkSession.builder.enableHiveSupport().getOrCreate() instead.", 

FutureWarning 

) 

if jhiveContext is None: 

sparkContext._conf.set("spark.sql.catalogImplementation", "hive") 

sparkSession = SparkSession.builder._sparkContext(sparkContext).getOrCreate() 

else: 

sparkSession = SparkSession(sparkContext, jhiveContext.sparkSession()) 

SQLContext.__init__(self, sparkContext, sparkSession, jhiveContext) 

 

@classmethod 

def _createForTesting(cls, sparkContext): 

"""(Internal use only) Create a new HiveContext for testing. 

 

All test code that touches HiveContext *must* go through this method. Otherwise, 

you may end up launching multiple derby instances and encounter with incredibly 

confusing error messages. 

""" 

jsc = sparkContext._jsc.sc() 

jtestHive = sparkContext._jvm.org.apache.spark.sql.hive.test.TestHiveContext(jsc, False) 

return cls(sparkContext, jtestHive) 

 

def refreshTable(self, tableName): 

"""Invalidate and refresh all the cached the metadata of the given 

table. For performance reasons, Spark SQL or the external data source 

library it uses might cache certain metadata about a table, such as the 

location of blocks. When those change outside of Spark SQL, users should 

call this function to invalidate the cache. 

""" 

self._ssql_ctx.refreshTable(tableName) 

 

 

def _test(): 

import os 

import doctest 

import tempfile 

from pyspark.context import SparkContext 

from pyspark.sql import Row, SQLContext 

import pyspark.sql.context 

 

os.chdir(os.environ["SPARK_HOME"]) 

 

globs = pyspark.sql.context.__dict__.copy() 

sc = SparkContext('local[4]', 'PythonTest') 

globs['tempfile'] = tempfile 

globs['os'] = os 

globs['sc'] = sc 

globs['sqlContext'] = SQLContext(sc) 

globs['rdd'] = rdd = sc.parallelize( 

[Row(field1=1, field2="row1"), 

Row(field1=2, field2="row2"), 

Row(field1=3, field2="row3")] 

) 

globs['df'] = rdd.toDF() 

jsonStrings = [ 

'{"field1": 1, "field2": "row1", "field3":{"field4":11}}', 

'{"field1" : 2, "field3":{"field4":22, "field5": [10, 11]},"field6":[{"field7": "row2"}]}', 

'{"field1" : null, "field2": "row3", "field3":{"field4":33, "field5": []}}' 

] 

globs['jsonStrings'] = jsonStrings 

globs['json'] = sc.parallelize(jsonStrings) 

(failure_count, test_count) = doctest.testmod( 

pyspark.sql.context, globs=globs, 

optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) 

globs['sc'].stop() 

668 ↛ 669line 668 didn't jump to line 669, because the condition on line 668 was never true if failure_count: 

sys.exit(-1) 

 

 

if __name__ == "__main__": 

_test()