Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import copy 

import sys 

import os 

import operator 

import shlex 

import warnings 

import heapq 

import bisect 

import random 

from subprocess import Popen, PIPE 

from threading import Thread 

from collections import defaultdict 

from itertools import chain 

from functools import reduce 

from math import sqrt, log, isinf, isnan, pow, ceil 

 

from pyspark.java_gateway import local_connect_and_auth 

from pyspark.serializers import AutoBatchedSerializer, BatchedSerializer, NoOpSerializer, \ 

CartesianDeserializer, CloudPickleSerializer, PairDeserializer, PickleSerializer, \ 

pack_long, read_int, write_int 

from pyspark.join import python_join, python_left_outer_join, \ 

python_right_outer_join, python_full_outer_join, python_cogroup 

from pyspark.statcounter import StatCounter 

from pyspark.rddsampler import RDDSampler, RDDRangeSampler, RDDStratifiedSampler 

from pyspark.storagelevel import StorageLevel 

from pyspark.resource.requests import ExecutorResourceRequests, TaskResourceRequests 

from pyspark.resource.profile import ResourceProfile 

from pyspark.resultiterable import ResultIterable 

from pyspark.shuffle import Aggregator, ExternalMerger, \ 

get_used_memory, ExternalSorter, ExternalGroupBy 

from pyspark.traceback_utils import SCCallSiteSync 

from pyspark.util import fail_on_stopiteration, _parse_memory 

 

__all__ = ["RDD"] 

 

 

class PythonEvalType(object): 

""" 

Evaluation type of python rdd. 

 

These values are internal to PySpark. 

 

These values should match values in org.apache.spark.api.python.PythonEvalType. 

""" 

NON_UDF = 0 

 

SQL_BATCHED_UDF = 100 

 

SQL_SCALAR_PANDAS_UDF = 200 

SQL_GROUPED_MAP_PANDAS_UDF = 201 

SQL_GROUPED_AGG_PANDAS_UDF = 202 

SQL_WINDOW_AGG_PANDAS_UDF = 203 

SQL_SCALAR_PANDAS_ITER_UDF = 204 

SQL_MAP_PANDAS_ITER_UDF = 205 

SQL_COGROUPED_MAP_PANDAS_UDF = 206 

 

 

def portable_hash(x): 

""" 

This function returns consistent hash code for builtin types, especially 

for None and tuple with None. 

 

The algorithm is similar to that one used by CPython 2.7 

 

Examples 

-------- 

>>> portable_hash(None) 

0 

>>> portable_hash((None, 1)) & 0xffffffff 

219750521 

""" 

 

90 ↛ 91line 90 didn't jump to line 91, because the condition on line 90 was never true if 'PYTHONHASHSEED' not in os.environ: 

raise RuntimeError("Randomness of hash of string should be disabled via PYTHONHASHSEED") 

 

if x is None: 

return 0 

if isinstance(x, tuple): 

h = 0x345678 

for i in x: 

h ^= portable_hash(i) 

h *= 1000003 

h &= sys.maxsize 

h ^= len(x) 

102 ↛ 103line 102 didn't jump to line 103, because the condition on line 102 was never true if h == -1: 

h = -2 

return int(h) 

return hash(x) 

 

 

class BoundedFloat(float): 

""" 

Bounded value is generated by approximate job, with confidence and low 

bound and high bound. 

 

Examples 

-------- 

>>> BoundedFloat(100.0, 0.95, 95.0, 105.0) 

100.0 

""" 

def __new__(cls, mean, confidence, low, high): 

obj = float.__new__(cls, mean) 

obj.confidence = confidence 

obj.low = low 

obj.high = high 

return obj 

 

 

def _create_local_socket(sock_info): 

""" 

Create a local socket that can be used to load deserialized data from the JVM 

 

Parameters 

---------- 

sock_info : tuple 

Tuple containing port number and authentication secret for a local socket. 

 

Returns 

------- 

sockfile file descriptor of the local socket 

""" 

port = sock_info[0] 

auth_secret = sock_info[1] 

sockfile, sock = local_connect_and_auth(port, auth_secret) 

# The RDD materialization time is unpredictable, if we set a timeout for socket reading 

# operation, it will very possibly fail. See SPARK-18281. 

sock.settimeout(None) 

return sockfile 

 

 

def _load_from_socket(sock_info, serializer): 

""" 

Connect to a local socket described by sock_info and use the given serializer to yield data 

 

Parameters 

---------- 

sock_info : tuple 

Tuple containing port number and authentication secret for a local socket. 

serializer : :py:class:`Serializer` 

The PySpark serializer to use 

 

Returns 

------- 

result of :py:meth:`Serializer.load_stream`, 

usually a generator that yields deserialized data 

""" 

sockfile = _create_local_socket(sock_info) 

# The socket will be automatically closed when garbage-collected. 

return serializer.load_stream(sockfile) 

 

 

def _local_iterator_from_socket(sock_info, serializer): 

 

class PyLocalIterable(object): 

""" Create a synchronous local iterable over a socket """ 

 

def __init__(self, _sock_info, _serializer): 

port, auth_secret, self.jsocket_auth_server = _sock_info 

self._sockfile = _create_local_socket((port, auth_secret)) 

self._serializer = _serializer 

self._read_iter = iter([]) # Initialize as empty iterator 

self._read_status = 1 

 

def __iter__(self): 

while self._read_status == 1: 

# Request next partition data from Java 

write_int(1, self._sockfile) 

self._sockfile.flush() 

 

# If response is 1 then there is a partition to read, if 0 then fully consumed 

self._read_status = read_int(self._sockfile) 

if self._read_status == 1: 

 

# Load the partition data as a stream and read each item 

self._read_iter = self._serializer.load_stream(self._sockfile) 

for item in self._read_iter: 

yield item 

 

# An error occurred, join serving thread and raise any exceptions from the JVM 

elif self._read_status == -1: 

self.jsocket_auth_server.getResult() 

 

def __del__(self): 

# If local iterator is not fully consumed, 

if self._read_status == 1: 

try: 

# Finish consuming partition data stream 

for _ in self._read_iter: 

pass 

# Tell Java to stop sending data and close connection 

write_int(0, self._sockfile) 

self._sockfile.flush() 

except Exception: 

# Ignore any errors, socket is automatically closed when garbage-collected 

pass 

 

return iter(PyLocalIterable(sock_info, serializer)) 

 

 

class Partitioner(object): 

def __init__(self, numPartitions, partitionFunc): 

self.numPartitions = numPartitions 

self.partitionFunc = partitionFunc 

 

def __eq__(self, other): 

return (isinstance(other, Partitioner) and self.numPartitions == other.numPartitions 

and self.partitionFunc == other.partitionFunc) 

 

def __call__(self, k): 

return self.partitionFunc(k) % self.numPartitions 

 

 

class RDD(object): 

 

""" 

A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. 

Represents an immutable, partitioned collection of elements that can be 

operated on in parallel. 

""" 

 

def __init__(self, jrdd, ctx, jrdd_deserializer=AutoBatchedSerializer(PickleSerializer())): 

self._jrdd = jrdd 

self.is_cached = False 

self.is_checkpointed = False 

self.has_resource_profile = False 

self.ctx = ctx 

self._jrdd_deserializer = jrdd_deserializer 

self._id = jrdd.id() 

self.partitioner = None 

 

def _pickled(self): 

return self._reserialize(AutoBatchedSerializer(PickleSerializer())) 

 

def id(self): 

""" 

A unique ID for this RDD (within its SparkContext). 

""" 

return self._id 

 

def __repr__(self): 

return self._jrdd.toString() 

 

def __getnewargs__(self): 

# This method is called when attempting to pickle an RDD, which is always an error: 

raise RuntimeError( 

"It appears that you are attempting to broadcast an RDD or reference an RDD from an " 

"action or transformation. RDD transformations and actions can only be invoked by the " 

"driver, not inside of other transformations; for example, " 

"rdd1.map(lambda x: rdd2.values.count() * x) is invalid because the values " 

"transformation and count action cannot be performed inside of the rdd1.map " 

"transformation. For more information, see SPARK-5063." 

) 

 

@property 

def context(self): 

""" 

The :class:`SparkContext` that this RDD was created on. 

""" 

return self.ctx 

 

def cache(self): 

""" 

Persist this RDD with the default storage level (`MEMORY_ONLY`). 

""" 

self.is_cached = True 

self.persist(StorageLevel.MEMORY_ONLY) 

return self 

 

def persist(self, storageLevel=StorageLevel.MEMORY_ONLY): 

""" 

Set this RDD's storage level to persist its values across operations 

after the first time it is computed. This can only be used to assign 

a new storage level if the RDD does not have a storage level set yet. 

If no storage level is specified defaults to (`MEMORY_ONLY`). 

 

Examples 

-------- 

>>> rdd = sc.parallelize(["b", "a", "c"]) 

>>> rdd.persist().is_cached 

True 

""" 

self.is_cached = True 

javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel) 

self._jrdd.persist(javaStorageLevel) 

return self 

 

def unpersist(self, blocking=False): 

""" 

Mark the RDD as non-persistent, and remove all blocks for it from 

memory and disk. 

 

.. versionchanged:: 3.0.0 

Added optional argument `blocking` to specify whether to block until all 

blocks are deleted. 

""" 

self.is_cached = False 

self._jrdd.unpersist(blocking) 

return self 

 

def checkpoint(self): 

""" 

Mark this RDD for checkpointing. It will be saved to a file inside the 

checkpoint directory set with :meth:`SparkContext.setCheckpointDir` and 

all references to its parent RDDs will be removed. This function must 

be called before any job has been executed on this RDD. It is strongly 

recommended that this RDD is persisted in memory, otherwise saving it 

on a file will require recomputation. 

""" 

self.is_checkpointed = True 

self._jrdd.rdd().checkpoint() 

 

def isCheckpointed(self): 

""" 

Return whether this RDD is checkpointed and materialized, either reliably or locally. 

""" 

return self._jrdd.rdd().isCheckpointed() 

 

def localCheckpoint(self): 

""" 

Mark this RDD for local checkpointing using Spark's existing caching layer. 

 

This method is for users who wish to truncate RDD lineages while skipping the expensive 

step of replicating the materialized data in a reliable distributed file system. This is 

useful for RDDs with long lineages that need to be truncated periodically (e.g. GraphX). 

 

Local checkpointing sacrifices fault-tolerance for performance. In particular, checkpointed 

data is written to ephemeral local storage in the executors instead of to a reliable, 

fault-tolerant storage. The effect is that if an executor fails during the computation, 

the checkpointed data may no longer be accessible, causing an irrecoverable job failure. 

 

This is NOT safe to use with dynamic allocation, which removes executors along 

with their cached blocks. If you must use both features, you are advised to set 

`spark.dynamicAllocation.cachedExecutorIdleTimeout` to a high value. 

 

The checkpoint directory set through :meth:`SparkContext.setCheckpointDir` is not used. 

""" 

self._jrdd.rdd().localCheckpoint() 

 

def isLocallyCheckpointed(self): 

""" 

Return whether this RDD is marked for local checkpointing. 

 

Exposed for testing. 

""" 

return self._jrdd.rdd().isLocallyCheckpointed() 

 

def getCheckpointFile(self): 

""" 

Gets the name of the file to which this RDD was checkpointed 

 

Not defined if RDD is checkpointed locally. 

""" 

checkpointFile = self._jrdd.rdd().getCheckpointFile() 

if checkpointFile.isDefined(): 

return checkpointFile.get() 

 

def map(self, f, preservesPartitioning=False): 

""" 

Return a new RDD by applying a function to each element of this RDD. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(["b", "a", "c"]) 

>>> sorted(rdd.map(lambda x: (x, 1)).collect()) 

[('a', 1), ('b', 1), ('c', 1)] 

""" 

def func(_, iterator): 

return map(fail_on_stopiteration(f), iterator) 

return self.mapPartitionsWithIndex(func, preservesPartitioning) 

 

def flatMap(self, f, preservesPartitioning=False): 

""" 

Return a new RDD by first applying a function to all elements of this 

RDD, and then flattening the results. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([2, 3, 4]) 

>>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) 

[1, 1, 1, 2, 2, 3] 

>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) 

[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] 

""" 

def func(s, iterator): 

return chain.from_iterable(map(fail_on_stopiteration(f), iterator)) 

return self.mapPartitionsWithIndex(func, preservesPartitioning) 

 

def mapPartitions(self, f, preservesPartitioning=False): 

""" 

Return a new RDD by applying a function to each partition of this RDD. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 2, 3, 4], 2) 

>>> def f(iterator): yield sum(iterator) 

>>> rdd.mapPartitions(f).collect() 

[3, 7] 

""" 

def func(s, iterator): 

return f(iterator) 

return self.mapPartitionsWithIndex(func, preservesPartitioning) 

 

def mapPartitionsWithIndex(self, f, preservesPartitioning=False): 

""" 

Return a new RDD by applying a function to each partition of this RDD, 

while tracking the index of the original partition. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 2, 3, 4], 4) 

>>> def f(splitIndex, iterator): yield splitIndex 

>>> rdd.mapPartitionsWithIndex(f).sum() 

6 

""" 

return PipelinedRDD(self, f, preservesPartitioning) 

 

def mapPartitionsWithSplit(self, f, preservesPartitioning=False): 

""" 

 

Return a new RDD by applying a function to each partition of this RDD, 

while tracking the index of the original partition. 

 

.. deprecated:: 0.9.0 

use :py:meth:`RDD.mapPartitionsWithIndex` instead. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 2, 3, 4], 4) 

>>> def f(splitIndex, iterator): yield splitIndex 

>>> rdd.mapPartitionsWithSplit(f).sum() 

6 

""" 

warnings.warn( 

"mapPartitionsWithSplit is deprecated; use mapPartitionsWithIndex instead", 

FutureWarning, stacklevel=2 

) 

return self.mapPartitionsWithIndex(f, preservesPartitioning) 

 

def getNumPartitions(self): 

""" 

Returns the number of partitions in RDD 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 2, 3, 4], 2) 

>>> rdd.getNumPartitions() 

2 

""" 

return self._jrdd.partitions().size() 

 

def filter(self, f): 

""" 

Return a new RDD containing only the elements that satisfy a predicate. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 2, 3, 4, 5]) 

>>> rdd.filter(lambda x: x % 2 == 0).collect() 

[2, 4] 

""" 

def func(iterator): 

return filter(fail_on_stopiteration(f), iterator) 

return self.mapPartitions(func, True) 

 

def distinct(self, numPartitions=None): 

""" 

Return a new RDD containing the distinct elements in this RDD. 

 

Examples 

-------- 

>>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect()) 

[1, 2, 3] 

""" 

return self.map(lambda x: (x, None)) \ 

.reduceByKey(lambda x, _: x, numPartitions) \ 

.map(lambda x: x[0]) 

 

def sample(self, withReplacement, fraction, seed=None): 

""" 

Return a sampled subset of this RDD. 

 

Parameters 

---------- 

withReplacement : bool 

can elements be sampled multiple times (replaced when sampled out) 

fraction : float 

expected size of the sample as a fraction of this RDD's size 

without replacement: probability that each element is chosen; fraction must be [0, 1] 

with replacement: expected number of times each element is chosen; fraction must be >= 0 

seed : int, optional 

seed for the random number generator 

 

Notes 

----- 

This is not guaranteed to provide exactly the fraction specified of the total 

count of the given :class:`DataFrame`. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(100), 4) 

>>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 

True 

""" 

assert fraction >= 0.0, "Negative fraction value: %s" % fraction 

return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True) 

 

def randomSplit(self, weights, seed=None): 

""" 

Randomly splits this RDD with the provided weights. 

 

weights : list 

weights for splits, will be normalized if they don't sum to 1 

seed : int, optional 

random seed 

 

Returns 

------- 

list 

split RDDs in a list 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(500), 1) 

>>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) 

>>> len(rdd1.collect() + rdd2.collect()) 

500 

>>> 150 < rdd1.count() < 250 

True 

>>> 250 < rdd2.count() < 350 

True 

""" 

s = float(sum(weights)) 

cweights = [0.0] 

for w in weights: 

cweights.append(cweights[-1] + w / s) 

553 ↛ 554line 553 didn't jump to line 554, because the condition on line 553 was never true if seed is None: 

seed = random.randint(0, 2 ** 32 - 1) 

return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True) 

for lb, ub in zip(cweights, cweights[1:])] 

 

# this is ported from scala/spark/RDD.scala 

def takeSample(self, withReplacement, num, seed=None): 

""" 

Return a fixed-size sampled subset of this RDD. 

 

Notes 

----- 

This method should only be used if the resulting array is expected 

to be small, as all the data is loaded into the driver's memory. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(0, 10)) 

>>> len(rdd.takeSample(True, 20, 1)) 

20 

>>> len(rdd.takeSample(False, 5, 2)) 

5 

>>> len(rdd.takeSample(False, 15, 3)) 

10 

""" 

numStDev = 10.0 

 

580 ↛ 581line 580 didn't jump to line 581, because the condition on line 580 was never true if num < 0: 

raise ValueError("Sample size cannot be negative.") 

582 ↛ 583line 582 didn't jump to line 583, because the condition on line 582 was never true elif num == 0: 

return [] 

 

initialCount = self.count() 

586 ↛ 587line 586 didn't jump to line 587, because the condition on line 586 was never true if initialCount == 0: 

return [] 

 

rand = random.Random(seed) 

 

if (not withReplacement) and num >= initialCount: 

# shuffle current RDD and return 

samples = self.collect() 

rand.shuffle(samples) 

return samples 

 

maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) 

598 ↛ 599line 598 didn't jump to line 599, because the condition on line 598 was never true if num > maxSampleSize: 

raise ValueError( 

"Sample size cannot be greater than %d." % maxSampleSize) 

 

fraction = RDD._computeFractionForSampleSize( 

num, initialCount, withReplacement) 

samples = self.sample(withReplacement, fraction, seed).collect() 

 

# If the first sample didn't turn out large enough, keep trying to take samples; 

# this shouldn't happen often because we use a big multiplier for their initial size. 

# See: scala/spark/RDD.scala 

609 ↛ 611line 609 didn't jump to line 611, because the condition on line 609 was never true while len(samples) < num: 

# TODO: add log warning for when more than one iteration was run 

seed = rand.randint(0, sys.maxsize) 

samples = self.sample(withReplacement, fraction, seed).collect() 

 

rand.shuffle(samples) 

 

return samples[0:num] 

 

@staticmethod 

def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement): 

""" 

Returns a sampling rate that guarantees a sample of 

size >= sampleSizeLowerBound 99.99% of the time. 

 

How the sampling rate is determined: 

Let p = num / total, where num is the sample size and total is the 

total number of data points in the RDD. We're trying to compute 

q > p such that 

- when sampling with replacement, we're drawing each data point 

with prob_i ~ Pois(q), where we want to guarantee 

Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to 

total), i.e. the failure rate of not having a sufficiently large 

sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient 

to guarantee 0.9999 success rate for num > 12, but we need a 

slightly larger q (9 empirically determined). 

- when sampling without replacement, we're drawing each data point 

with prob_i ~ Binomial(total, fraction) and our choice of q 

guarantees 1-delta, or 0.9999 success rate, where success rate is 

defined the same as in sampling with replacement. 

""" 

fraction = float(sampleSizeLowerBound) / total 

if withReplacement: 

numStDev = 5 

643 ↛ 644line 643 didn't jump to line 644, because the condition on line 643 was never true if (sampleSizeLowerBound < 12): 

numStDev = 9 

return fraction + numStDev * sqrt(fraction / total) 

else: 

delta = 0.00005 

gamma = - log(delta) / total 

return min(1, fraction + gamma + sqrt(gamma * gamma + 2 * gamma * fraction)) 

 

def union(self, other): 

""" 

Return the union of this RDD and another one. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 1, 2, 3]) 

>>> rdd.union(rdd).collect() 

[1, 1, 2, 3, 1, 1, 2, 3] 

""" 

if self._jrdd_deserializer == other._jrdd_deserializer: 

rdd = RDD(self._jrdd.union(other._jrdd), self.ctx, 

self._jrdd_deserializer) 

else: 

# These RDDs contain data in different serialized formats, so we 

# must normalize them to the default serializer. 

self_copy = self._reserialize() 

other_copy = other._reserialize() 

rdd = RDD(self_copy._jrdd.union(other_copy._jrdd), self.ctx, 

self.ctx.serializer) 

if (self.partitioner == other.partitioner and 

self.getNumPartitions() == rdd.getNumPartitions()): 

rdd.partitioner = self.partitioner 

return rdd 

 

def intersection(self, other): 

""" 

Return the intersection of this RDD and another one. The output will 

not contain any duplicate elements, even if the input RDDs did. 

 

Notes 

----- 

This method performs a shuffle internally. 

 

Examples 

-------- 

>>> rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5]) 

>>> rdd2 = sc.parallelize([1, 6, 2, 3, 7, 8]) 

>>> rdd1.intersection(rdd2).collect() 

[1, 2, 3] 

""" 

return self.map(lambda v: (v, None)) \ 

.cogroup(other.map(lambda v: (v, None))) \ 

.filter(lambda k_vs: all(k_vs[1])) \ 

.keys() 

 

def _reserialize(self, serializer=None): 

serializer = serializer or self.ctx.serializer 

if self._jrdd_deserializer != serializer: 

self = self.map(lambda x: x, preservesPartitioning=True) 

self._jrdd_deserializer = serializer 

return self 

 

def __add__(self, other): 

""" 

Return the union of this RDD and another one. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 1, 2, 3]) 

>>> (rdd + rdd).collect() 

[1, 1, 2, 3, 1, 1, 2, 3] 

""" 

714 ↛ 715line 714 didn't jump to line 715, because the condition on line 714 was never true if not isinstance(other, RDD): 

raise TypeError 

return self.union(other) 

 

def repartitionAndSortWithinPartitions(self, numPartitions=None, partitionFunc=portable_hash, 

ascending=True, keyfunc=lambda x: x): 

""" 

Repartition the RDD according to the given partitioner and, within each resulting partition, 

sort records by their keys. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 3)]) 

>>> rdd2 = rdd.repartitionAndSortWithinPartitions(2, lambda x: x % 2, True) 

>>> rdd2.glom().collect() 

[[(0, 5), (0, 8), (2, 6)], [(1, 3), (3, 8), (3, 8)]] 

""" 

731 ↛ 732line 731 didn't jump to line 732, because the condition on line 731 was never true if numPartitions is None: 

numPartitions = self._defaultReducePartitions() 

 

memory = self._memory_limit() 

serializer = self._jrdd_deserializer 

 

def sortPartition(iterator): 

sort = ExternalSorter(memory * 0.9, serializer).sorted 

return iter(sort(iterator, key=lambda k_v: keyfunc(k_v[0]), reverse=(not ascending))) 

 

return self.partitionBy(numPartitions, partitionFunc).mapPartitions(sortPartition, True) 

 

def sortByKey(self, ascending=True, numPartitions=None, keyfunc=lambda x: x): 

""" 

Sorts this RDD, which is assumed to consist of (key, value) pairs. 

 

Examples 

-------- 

>>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] 

>>> sc.parallelize(tmp).sortByKey().first() 

('1', 3) 

>>> sc.parallelize(tmp).sortByKey(True, 1).collect() 

[('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] 

>>> sc.parallelize(tmp).sortByKey(True, 2).collect() 

[('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] 

>>> tmp2 = [('Mary', 1), ('had', 2), ('a', 3), ('little', 4), ('lamb', 5)] 

>>> tmp2.extend([('whose', 6), ('fleece', 7), ('was', 8), ('white', 9)]) 

>>> sc.parallelize(tmp2).sortByKey(True, 3, keyfunc=lambda k: k.lower()).collect() 

[('a', 3), ('fleece', 7), ('had', 2), ('lamb', 5),...('white', 9), ('whose', 6)] 

""" 

if numPartitions is None: 

numPartitions = self._defaultReducePartitions() 

 

memory = self._memory_limit() 

serializer = self._jrdd_deserializer 

 

def sortPartition(iterator): 

sort = ExternalSorter(memory * 0.9, serializer).sorted 

return iter(sort(iterator, key=lambda kv: keyfunc(kv[0]), reverse=(not ascending))) 

 

if numPartitions == 1: 

772 ↛ 774line 772 didn't jump to line 774, because the condition on line 772 was never false if self.getNumPartitions() > 1: 

self = self.coalesce(1) 

return self.mapPartitions(sortPartition, True) 

 

# first compute the boundary of each part via sampling: we want to partition 

# the key-space into bins such that the bins have roughly the same 

# number of (key, value) pairs falling into them 

rddSize = self.count() 

if not rddSize: 

return self # empty RDD 

maxSampleSize = numPartitions * 20.0 # constant from Spark's RangePartitioner 

fraction = min(maxSampleSize / max(rddSize, 1), 1.0) 

samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect() 

samples = sorted(samples, key=keyfunc) 

 

# we have numPartitions many parts but one of the them has 

# an implicit boundary 

bounds = [samples[int(len(samples) * (i + 1) / numPartitions)] 

for i in range(0, numPartitions - 1)] 

 

def rangePartitioner(k): 

p = bisect.bisect_left(bounds, keyfunc(k)) 

if ascending: 

return p 

else: 

return numPartitions - 1 - p 

 

return self.partitionBy(numPartitions, rangePartitioner).mapPartitions(sortPartition, True) 

 

def sortBy(self, keyfunc, ascending=True, numPartitions=None): 

""" 

Sorts this RDD by the given keyfunc 

 

Examples 

-------- 

>>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] 

>>> sc.parallelize(tmp).sortBy(lambda x: x[0]).collect() 

[('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] 

>>> sc.parallelize(tmp).sortBy(lambda x: x[1]).collect() 

[('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] 

""" 

return self.keyBy(keyfunc).sortByKey(ascending, numPartitions).values() 

 

def glom(self): 

""" 

Return an RDD created by coalescing all elements within each partition 

into a list. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 2, 3, 4], 2) 

>>> sorted(rdd.glom().collect()) 

[[1, 2], [3, 4]] 

""" 

def func(iterator): 

yield list(iterator) 

return self.mapPartitions(func) 

 

def cartesian(self, other): 

""" 

Return the Cartesian product of this RDD and another one, that is, the 

RDD of all pairs of elements ``(a, b)`` where ``a`` is in `self` and 

``b`` is in `other`. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 2]) 

>>> sorted(rdd.cartesian(rdd).collect()) 

[(1, 1), (1, 2), (2, 1), (2, 2)] 

""" 

# Due to batching, we can't use the Java cartesian method. 

deserializer = CartesianDeserializer(self._jrdd_deserializer, 

other._jrdd_deserializer) 

return RDD(self._jrdd.cartesian(other._jrdd), self.ctx, deserializer) 

 

def groupBy(self, f, numPartitions=None, partitionFunc=portable_hash): 

""" 

Return an RDD of grouped items. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1, 1, 2, 3, 5, 8]) 

>>> result = rdd.groupBy(lambda x: x % 2).collect() 

>>> sorted([(x, sorted(y)) for (x, y) in result]) 

[(0, [2, 8]), (1, [1, 1, 3, 5])] 

""" 

return self.map(lambda x: (f(x), x)).groupByKey(numPartitions, partitionFunc) 

 

def pipe(self, command, env=None, checkCode=False): 

""" 

Return an RDD created by piping elements to a forked external process. 

 

Parameters 

---------- 

command : str 

command to run. 

env : dict, optional 

environment variables to set. 

checkCode : bool, optional 

whether or not to check the return value of the shell command. 

 

Examples 

-------- 

>>> sc.parallelize(['1', '2', '', '3']).pipe('cat').collect() 

['1', '2', '', '3'] 

""" 

878 ↛ 881line 878 didn't jump to line 881, because the condition on line 878 was never false if env is None: 

env = dict() 

 

def func(iterator): 

pipe = Popen( 

shlex.split(command), env=env, stdin=PIPE, stdout=PIPE) 

 

def pipe_objs(out): 

for obj in iterator: 

s = str(obj).rstrip('\n') + '\n' 

out.write(s.encode('utf-8')) 

out.close() 

Thread(target=pipe_objs, args=[pipe.stdin]).start() 

 

def check_return_code(): 

pipe.wait() 

if checkCode and pipe.returncode: 

raise RuntimeError("Pipe function `%s' exited " 

"with error code %d" % (command, pipe.returncode)) 

else: 

898 ↛ 899line 898 didn't jump to line 899, because the loop on line 898 never started for i in range(0): 

yield i 

return (x.rstrip(b'\n').decode('utf-8') for x in 

chain(iter(pipe.stdout.readline, b''), check_return_code())) 

return self.mapPartitions(func) 

 

def foreach(self, f): 

""" 

Applies a function to all elements of this RDD. 

 

Examples 

-------- 

>>> def f(x): print(x) 

>>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f) 

""" 

f = fail_on_stopiteration(f) 

 

def processPartition(iterator): 

for x in iterator: 

f(x) 

return iter([]) 

self.mapPartitions(processPartition).count() # Force evaluation 

 

def foreachPartition(self, f): 

""" 

Applies a function to each partition of this RDD. 

 

Examples 

-------- 

>>> def f(iterator): 

... for x in iterator: 

... print(x) 

>>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f) 

""" 

def func(it): 

r = f(it) 

try: 

return iter(r) 

except TypeError: 

return iter([]) 

self.mapPartitions(func).count() # Force evaluation 

 

def collect(self): 

""" 

Return a list that contains all of the elements in this RDD. 

 

Notes 

----- 

This method should only be used if the resulting array is expected 

to be small, as all the data is loaded into the driver's memory. 

""" 

with SCCallSiteSync(self.context) as css: 

sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) 

return list(_load_from_socket(sock_info, self._jrdd_deserializer)) 

 

def collectWithJobGroup(self, groupId, description, interruptOnCancel=False): 

""" 

When collect rdd, use this method to specify job group. 

 

.. versionadded:: 3.0.0 

.. deprecated:: 3.1.0 

Use :class:`pyspark.InheritableThread` with the pinned thread mode enabled. 

""" 

warnings.warn( 

"Deprecated in 3.1, Use pyspark.InheritableThread with " 

"the pinned thread mode enabled.", 

FutureWarning 

) 

 

with SCCallSiteSync(self.context) as css: 

sock_info = self.ctx._jvm.PythonRDD.collectAndServeWithJobGroup( 

self._jrdd.rdd(), groupId, description, interruptOnCancel) 

return list(_load_from_socket(sock_info, self._jrdd_deserializer)) 

 

def reduce(self, f): 

""" 

Reduces the elements of this RDD using the specified commutative and 

associative binary operator. Currently reduces partitions locally. 

 

Examples 

-------- 

>>> from operator import add 

>>> sc.parallelize([1, 2, 3, 4, 5]).reduce(add) 

15 

>>> sc.parallelize((2 for _ in range(10))).map(lambda x: 1).cache().reduce(add) 

10 

>>> sc.parallelize([]).reduce(add) 

Traceback (most recent call last): 

... 

ValueError: Can not reduce() empty RDD 

""" 

f = fail_on_stopiteration(f) 

 

def func(iterator): 

iterator = iter(iterator) 

try: 

initial = next(iterator) 

except StopIteration: 

return 

yield reduce(f, iterator, initial) 

 

vals = self.mapPartitions(func).collect() 

if vals: 

return reduce(f, vals) 

raise ValueError("Can not reduce() empty RDD") 

 

def treeReduce(self, f, depth=2): 

""" 

Reduces the elements of this RDD in a multi-level tree pattern. 

 

Parameters 

---------- 

f : function 

depth : int, optional 

suggested depth of the tree (default: 2) 

 

Examples 

-------- 

>>> add = lambda x, y: x + y 

>>> rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10) 

>>> rdd.treeReduce(add) 

-5 

>>> rdd.treeReduce(add, 1) 

-5 

>>> rdd.treeReduce(add, 2) 

-5 

>>> rdd.treeReduce(add, 5) 

-5 

>>> rdd.treeReduce(add, 10) 

-5 

""" 

1029 ↛ 1030line 1029 didn't jump to line 1030, because the condition on line 1029 was never true if depth < 1: 

raise ValueError("Depth cannot be smaller than 1 but got %d." % depth) 

 

zeroValue = None, True # Use the second entry to indicate whether this is a dummy value. 

 

def op(x, y): 

if x[1]: 

return y 

1037 ↛ 1038line 1037 didn't jump to line 1038, because the condition on line 1037 was never true elif y[1]: 

return x 

else: 

return f(x[0], y[0]), False 

 

reduced = self.map(lambda x: (x, False)).treeAggregate(zeroValue, op, op, depth) 

1043 ↛ 1044line 1043 didn't jump to line 1044, because the condition on line 1043 was never true if reduced[1]: 

raise ValueError("Cannot reduce empty RDD.") 

return reduced[0] 

 

def fold(self, zeroValue, op): 

""" 

Aggregate the elements of each partition, and then the results for all 

the partitions, using a given associative function and a neutral "zero value." 

 

The function ``op(t1, t2)`` is allowed to modify ``t1`` and return it 

as its result value to avoid object allocation; however, it should not 

modify ``t2``. 

 

This behaves somewhat differently from fold operations implemented 

for non-distributed collections in functional languages like Scala. 

This fold operation may be applied to partitions individually, and then 

fold those results into the final result, rather than apply the fold 

to each element sequentially in some defined ordering. For functions 

that are not commutative, the result may differ from that of a fold 

applied to a non-distributed collection. 

 

Examples 

-------- 

>>> from operator import add 

>>> sc.parallelize([1, 2, 3, 4, 5]).fold(0, add) 

15 

""" 

op = fail_on_stopiteration(op) 

 

def func(iterator): 

acc = zeroValue 

for obj in iterator: 

acc = op(acc, obj) 

yield acc 

# collecting result of mapPartitions here ensures that the copy of 

# zeroValue provided to each partition is unique from the one provided 

# to the final reduce call 

vals = self.mapPartitions(func).collect() 

return reduce(op, vals, zeroValue) 

 

def aggregate(self, zeroValue, seqOp, combOp): 

""" 

Aggregate the elements of each partition, and then the results for all 

the partitions, using a given combine functions and a neutral "zero 

value." 

 

The functions ``op(t1, t2)`` is allowed to modify ``t1`` and return it 

as its result value to avoid object allocation; however, it should not 

modify ``t2``. 

 

The first function (seqOp) can return a different result type, U, than 

the type of this RDD. Thus, we need one operation for merging a T into 

an U and one operation for merging two U 

 

Examples 

-------- 

>>> seqOp = (lambda x, y: (x[0] + y, x[1] + 1)) 

>>> combOp = (lambda x, y: (x[0] + y[0], x[1] + y[1])) 

>>> sc.parallelize([1, 2, 3, 4]).aggregate((0, 0), seqOp, combOp) 

(10, 4) 

>>> sc.parallelize([]).aggregate((0, 0), seqOp, combOp) 

(0, 0) 

""" 

seqOp = fail_on_stopiteration(seqOp) 

combOp = fail_on_stopiteration(combOp) 

 

def func(iterator): 

acc = zeroValue 

for obj in iterator: 

acc = seqOp(acc, obj) 

yield acc 

# collecting result of mapPartitions here ensures that the copy of 

# zeroValue provided to each partition is unique from the one provided 

# to the final reduce call 

vals = self.mapPartitions(func).collect() 

return reduce(combOp, vals, zeroValue) 

 

def treeAggregate(self, zeroValue, seqOp, combOp, depth=2): 

""" 

Aggregates the elements of this RDD in a multi-level tree 

pattern. 

 

depth : int, optional 

suggested depth of the tree (default: 2) 

 

Examples 

-------- 

>>> add = lambda x, y: x + y 

>>> rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10) 

>>> rdd.treeAggregate(0, add, add) 

-5 

>>> rdd.treeAggregate(0, add, add, 1) 

-5 

>>> rdd.treeAggregate(0, add, add, 2) 

-5 

>>> rdd.treeAggregate(0, add, add, 5) 

-5 

>>> rdd.treeAggregate(0, add, add, 10) 

-5 

""" 

1143 ↛ 1144line 1143 didn't jump to line 1144, because the condition on line 1143 was never true if depth < 1: 

raise ValueError("Depth cannot be smaller than 1 but got %d." % depth) 

 

1146 ↛ 1147line 1146 didn't jump to line 1147, because the condition on line 1146 was never true if self.getNumPartitions() == 0: 

return zeroValue 

 

def aggregatePartition(iterator): 

acc = zeroValue 

for obj in iterator: 

acc = seqOp(acc, obj) 

yield acc 

 

partiallyAggregated = self.mapPartitions(aggregatePartition) 

numPartitions = partiallyAggregated.getNumPartitions() 

scale = max(int(ceil(pow(numPartitions, 1.0 / depth))), 2) 

# If creating an extra level doesn't help reduce the wall-clock time, we stop the tree 

# aggregation. 

while numPartitions > scale + numPartitions / scale: 

numPartitions /= scale 

curNumPartitions = int(numPartitions) 

 

def mapPartition(i, iterator): 

for obj in iterator: 

yield (i % curNumPartitions, obj) 

 

partiallyAggregated = partiallyAggregated \ 

.mapPartitionsWithIndex(mapPartition) \ 

.reduceByKey(combOp, curNumPartitions) \ 

.values() 

 

return partiallyAggregated.reduce(combOp) 

 

def max(self, key=None): 

""" 

Find the maximum item in this RDD. 

 

Parameters 

---------- 

key : function, optional 

A function used to generate key for comparing 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1.0, 5.0, 43.0, 10.0]) 

>>> rdd.max() 

43.0 

>>> rdd.max(key=str) 

5.0 

""" 

if key is None: 

return self.reduce(max) 

return self.reduce(lambda a, b: max(a, b, key=key)) 

 

def min(self, key=None): 

""" 

Find the minimum item in this RDD. 

 

Parameters 

---------- 

key : function, optional 

A function used to generate key for comparing 

 

Examples 

-------- 

>>> rdd = sc.parallelize([2.0, 5.0, 43.0, 10.0]) 

>>> rdd.min() 

2.0 

>>> rdd.min(key=str) 

10.0 

""" 

if key is None: 

return self.reduce(min) 

return self.reduce(lambda a, b: min(a, b, key=key)) 

 

def sum(self): 

""" 

Add up the elements in this RDD. 

 

Examples 

-------- 

>>> sc.parallelize([1.0, 2.0, 3.0]).sum() 

6.0 

""" 

return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add) 

 

def count(self): 

""" 

Return the number of elements in this RDD. 

 

Examples 

-------- 

>>> sc.parallelize([2, 3, 4]).count() 

3 

""" 

return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum() 

 

def stats(self): 

""" 

Return a :class:`StatCounter` object that captures the mean, variance 

and count of the RDD's elements in one operation. 

""" 

def redFunc(left_counter, right_counter): 

return left_counter.mergeStats(right_counter) 

 

return self.mapPartitions(lambda i: [StatCounter(i)]).reduce(redFunc) 

 

def histogram(self, buckets): 

""" 

Compute a histogram using the provided buckets. The buckets 

are all open to the right except for the last which is closed. 

e.g. [1,10,20,50] means the buckets are [1,10) [10,20) [20,50], 

which means 1<=x<10, 10<=x<20, 20<=x<=50. And on the input of 1 

and 50 we would have a histogram of 1,0,1. 

 

If your histogram is evenly spaced (e.g. [0, 10, 20, 30]), 

this can be switched from an O(log n) insertion to O(1) per 

element (where n is the number of buckets). 

 

Buckets must be sorted, not contain any duplicates, and have 

at least two elements. 

 

If `buckets` is a number, it will generate buckets which are 

evenly spaced between the minimum and maximum of the RDD. For 

example, if the min value is 0 and the max is 100, given `buckets` 

as 2, the resulting buckets will be [0,50) [50,100]. `buckets` must 

be at least 1. An exception is raised if the RDD contains infinity. 

If the elements in the RDD do not vary (max == min), a single bucket 

will be used. 

 

The return value is a tuple of buckets and histogram. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(51)) 

>>> rdd.histogram(2) 

([0, 25, 50], [25, 26]) 

>>> rdd.histogram([0, 5, 25, 50]) 

([0, 5, 25, 50], [5, 20, 26]) 

>>> rdd.histogram([0, 15, 30, 45, 60]) # evenly spaced buckets 

([0, 15, 30, 45, 60], [15, 15, 15, 6]) 

>>> rdd = sc.parallelize(["ab", "ac", "b", "bd", "ef"]) 

>>> rdd.histogram(("a", "b", "c")) 

(('a', 'b', 'c'), [2, 2]) 

""" 

 

if isinstance(buckets, int): 

if buckets < 1: 

raise ValueError("number of buckets must be >= 1") 

 

# filter out non-comparable elements 

def comparable(x): 

1294 ↛ 1295line 1294 didn't jump to line 1295, because the condition on line 1294 was never true if x is None: 

return False 

if type(x) is float and isnan(x): 

return False 

return True 

 

filtered = self.filter(comparable) 

 

# faster than stats() 

def minmax(a, b): 

return min(a[0], b[0]), max(a[1], b[1]) 

try: 

minv, maxv = filtered.map(lambda x: (x, x)).reduce(minmax) 

except TypeError as e: 

if " empty " in str(e): 

raise ValueError("can not generate buckets from empty RDD") 

raise 

 

if minv == maxv or buckets == 1: 

return [minv, maxv], [filtered.count()] 

 

try: 

inc = (maxv - minv) / buckets 

except TypeError: 

raise TypeError("Can not generate buckets with non-number in RDD") 

 

if isinf(inc): 

raise ValueError("Can not generate buckets with infinite value") 

 

# keep them as integer if possible 

inc = int(inc) 

if inc * buckets != maxv - minv: 

inc = (maxv - minv) * 1.0 / buckets 

 

buckets = [i * inc + minv for i in range(buckets)] 

buckets.append(maxv) # fix accumulated error 

even = True 

 

elif isinstance(buckets, (list, tuple)): 

if len(buckets) < 2: 

raise ValueError("buckets should have more than one value") 

 

1336 ↛ 1337line 1336 didn't jump to line 1337, because the condition on line 1336 was never true if any(i is None or isinstance(i, float) and isnan(i) for i in buckets): 

raise ValueError("can not have None or NaN in buckets") 

 

1339 ↛ 1340line 1339 didn't jump to line 1340, because the condition on line 1339 was never true if sorted(buckets) != list(buckets): 

raise ValueError("buckets should be sorted") 

 

1342 ↛ 1343line 1342 didn't jump to line 1343, because the condition on line 1342 was never true if len(set(buckets)) != len(buckets): 

raise ValueError("buckets should not contain duplicated values") 

 

minv = buckets[0] 

maxv = buckets[-1] 

even = False 

inc = None 

try: 

steps = [buckets[i + 1] - buckets[i] for i in range(len(buckets) - 1)] 

except TypeError: 

pass # objects in buckets do not support '-' 

else: 

if max(steps) - min(steps) < 1e-10: # handle precision errors 

even = True 

inc = (maxv - minv) / (len(buckets) - 1) 

 

else: 

raise TypeError("buckets should be a list or tuple or number(int or long)") 

 

def histogram(iterator): 

counters = [0] * len(buckets) 

for i in iterator: 

if i is None or (type(i) is float and isnan(i)) or i > maxv or i < minv: 

continue 

t = (int((i - minv) / inc) if even 

else bisect.bisect_right(buckets, i) - 1) 

counters[t] += 1 

# add last two together 

last = counters.pop() 

counters[-1] += last 

return [counters] 

 

def mergeCounters(a, b): 

return [i + j for i, j in zip(a, b)] 

 

return buckets, self.mapPartitions(histogram).reduce(mergeCounters) 

 

def mean(self): 

""" 

Compute the mean of this RDD's elements. 

 

Examples 

-------- 

>>> sc.parallelize([1, 2, 3]).mean() 

2.0 

""" 

return self.stats().mean() 

 

def variance(self): 

""" 

Compute the variance of this RDD's elements. 

 

Examples 

-------- 

>>> sc.parallelize([1, 2, 3]).variance() 

0.666... 

""" 

return self.stats().variance() 

 

def stdev(self): 

""" 

Compute the standard deviation of this RDD's elements. 

 

Examples 

-------- 

>>> sc.parallelize([1, 2, 3]).stdev() 

0.816... 

""" 

return self.stats().stdev() 

 

def sampleStdev(self): 

""" 

Compute the sample standard deviation of this RDD's elements (which 

corrects for bias in estimating the standard deviation by dividing by 

N-1 instead of N). 

 

Examples 

-------- 

>>> sc.parallelize([1, 2, 3]).sampleStdev() 

1.0 

""" 

return self.stats().sampleStdev() 

 

def sampleVariance(self): 

""" 

Compute the sample variance of this RDD's elements (which corrects 

for bias in estimating the variance by dividing by N-1 instead of N). 

 

Examples 

-------- 

>>> sc.parallelize([1, 2, 3]).sampleVariance() 

1.0 

""" 

return self.stats().sampleVariance() 

 

def countByValue(self): 

""" 

Return the count of each unique value in this RDD as a dictionary of 

(value, count) pairs. 

 

Examples 

-------- 

>>> sorted(sc.parallelize([1, 2, 1, 2, 2], 2).countByValue().items()) 

[(1, 2), (2, 3)] 

""" 

def countPartition(iterator): 

counts = defaultdict(int) 

for obj in iterator: 

counts[obj] += 1 

yield counts 

 

def mergeMaps(m1, m2): 

for k, v in m2.items(): 

m1[k] += v 

return m1 

return self.mapPartitions(countPartition).reduce(mergeMaps) 

 

def top(self, num, key=None): 

""" 

Get the top N elements from an RDD. 

 

Notes 

----- 

This method should only be used if the resulting array is expected 

to be small, as all the data is loaded into the driver's memory. 

 

It returns the list sorted in descending order. 

 

Examples 

-------- 

>>> sc.parallelize([10, 4, 2, 12, 3]).top(1) 

[12] 

>>> sc.parallelize([2, 3, 4, 5, 6], 2).top(2) 

[6, 5] 

>>> sc.parallelize([10, 4, 2, 12, 3]).top(3, key=str) 

[4, 3, 2] 

""" 

def topIterator(iterator): 

yield heapq.nlargest(num, iterator, key=key) 

 

def merge(a, b): 

return heapq.nlargest(num, a + b, key=key) 

 

return self.mapPartitions(topIterator).reduce(merge) 

 

def takeOrdered(self, num, key=None): 

""" 

Get the N elements from an RDD ordered in ascending order or as 

specified by the optional key function. 

 

Notes 

----- 

This method should only be used if the resulting array is expected 

to be small, as all the data is loaded into the driver's memory. 

 

Examples 

-------- 

>>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7]).takeOrdered(6) 

[1, 2, 3, 4, 5, 6] 

>>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7], 2).takeOrdered(6, key=lambda x: -x) 

[10, 9, 7, 6, 5, 4] 

""" 

 

def merge(a, b): 

return heapq.nsmallest(num, a + b, key) 

 

return self.mapPartitions(lambda it: [heapq.nsmallest(num, it, key)]).reduce(merge) 

 

def take(self, num): 

""" 

Take the first num elements of the RDD. 

 

It works by first scanning one partition, and use the results from 

that partition to estimate the number of additional partitions needed 

to satisfy the limit. 

 

Translated from the Scala implementation in RDD#take(). 

 

Notes 

----- 

This method should only be used if the resulting array is expected 

to be small, as all the data is loaded into the driver's memory. 

 

Examples 

-------- 

>>> sc.parallelize([2, 3, 4, 5, 6]).cache().take(2) 

[2, 3] 

>>> sc.parallelize([2, 3, 4, 5, 6]).take(10) 

[2, 3, 4, 5, 6] 

>>> sc.parallelize(range(100), 100).filter(lambda x: x > 90).take(3) 

[91, 92, 93] 

""" 

items = [] 

totalParts = self.getNumPartitions() 

partsScanned = 0 

 

while len(items) < num and partsScanned < totalParts: 

# The number of partitions to try in this iteration. 

# It is ok for this number to be greater than totalParts because 

# we actually cap it at totalParts in runJob. 

numPartsToTry = 1 

if partsScanned > 0: 

# If we didn't find any rows after the previous iteration, 

# quadruple and retry. Otherwise, interpolate the number of 

# partitions we need to try, but overestimate it by 50%. 

# We also cap the estimation in the end. 

if len(items) == 0: 

numPartsToTry = partsScanned * 4 

else: 

# the first parameter of max is >=1 whenever partsScanned >= 2 

numPartsToTry = int(1.5 * num * partsScanned / len(items)) - partsScanned 

numPartsToTry = min(max(numPartsToTry, 1), partsScanned * 4) 

 

left = num - len(items) 

 

def takeUpToNumLeft(iterator): 

iterator = iter(iterator) 

taken = 0 

while taken < left: 

try: 

yield next(iterator) 

except StopIteration: 

return 

taken += 1 

 

p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts)) 

res = self.context.runJob(self, takeUpToNumLeft, p) 

 

items += res 

partsScanned += numPartsToTry 

 

return items[:num] 

 

def first(self): 

""" 

Return the first element in this RDD. 

 

Examples 

-------- 

>>> sc.parallelize([2, 3, 4]).first() 

2 

>>> sc.parallelize([]).first() 

Traceback (most recent call last): 

... 

ValueError: RDD is empty 

""" 

rs = self.take(1) 

if rs: 

return rs[0] 

raise ValueError("RDD is empty") 

 

def isEmpty(self): 

""" 

Returns true if and only if the RDD contains no elements at all. 

 

Notes 

----- 

An RDD may be empty even when it has at least 1 partition. 

 

Examples 

-------- 

>>> sc.parallelize([]).isEmpty() 

True 

>>> sc.parallelize([1]).isEmpty() 

False 

""" 

return self.getNumPartitions() == 0 or len(self.take(1)) == 0 

 

def saveAsNewAPIHadoopDataset(self, conf, keyConverter=None, valueConverter=None): 

""" 

Output a Python RDD of key-value pairs (of form ``RDD[(K, V)]``) to any Hadoop file 

system, using the new Hadoop OutputFormat API (mapreduce package). Keys/values are 

converted for output using either user specified converters or, by default, 

"org.apache.spark.api.python.JavaToWritableConverter". 

 

Parameters 

---------- 

conf : dict 

Hadoop job configuration 

keyConverter : str, optional 

fully qualified classname of key converter (None by default) 

valueConverter : str, optional 

fully qualified classname of value converter (None by default) 

""" 

jconf = self.ctx._dictToJavaMap(conf) 

pickledRDD = self._pickled() 

self.ctx._jvm.PythonRDD.saveAsHadoopDataset(pickledRDD._jrdd, True, jconf, 

keyConverter, valueConverter, True) 

 

def saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, 

keyConverter=None, valueConverter=None, conf=None): 

""" 

Output a Python RDD of key-value pairs (of form ``RDD[(K, V)]``) to any Hadoop file 

system, using the new Hadoop OutputFormat API (mapreduce package). Key and value types 

will be inferred if not specified. Keys and values are converted for output using either 

user specified converters or "org.apache.spark.api.python.JavaToWritableConverter". The 

`conf` is applied on top of the base Hadoop conf associated with the SparkContext 

of this RDD to create a merged Hadoop MapReduce job configuration for saving the data. 

 

path : str 

path to Hadoop file 

outputFormatClass : str 

fully qualified classname of Hadoop OutputFormat 

(e.g. "org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat") 

keyClass : str, optional 

fully qualified classname of key Writable class 

(e.g. "org.apache.hadoop.io.IntWritable", None by default) 

valueClass : str, optional 

fully qualified classname of value Writable class 

(e.g. "org.apache.hadoop.io.Text", None by default) 

keyConverter : str, optional 

fully qualified classname of key converter (None by default) 

valueConverter : str, optional 

fully qualified classname of value converter (None by default) 

conf : dict, optional 

Hadoop job configuration (None by default) 

""" 

jconf = self.ctx._dictToJavaMap(conf) 

pickledRDD = self._pickled() 

self.ctx._jvm.PythonRDD.saveAsNewAPIHadoopFile(pickledRDD._jrdd, True, path, 

outputFormatClass, 

keyClass, valueClass, 

keyConverter, valueConverter, jconf) 

 

def saveAsHadoopDataset(self, conf, keyConverter=None, valueConverter=None): 

""" 

Output a Python RDD of key-value pairs (of form ``RDD[(K, V)]``) to any Hadoop file 

system, using the old Hadoop OutputFormat API (mapred package). Keys/values are 

converted for output using either user specified converters or, by default, 

"org.apache.spark.api.python.JavaToWritableConverter". 

 

Parameters 

---------- 

conf : dict 

Hadoop job configuration 

keyConverter : str, optional 

fully qualified classname of key converter (None by default) 

valueConverter : str, optional 

fully qualified classname of value converter (None by default) 

""" 

jconf = self.ctx._dictToJavaMap(conf) 

pickledRDD = self._pickled() 

self.ctx._jvm.PythonRDD.saveAsHadoopDataset(pickledRDD._jrdd, True, jconf, 

keyConverter, valueConverter, False) 

 

def saveAsHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, 

keyConverter=None, valueConverter=None, conf=None, 

compressionCodecClass=None): 

""" 

Output a Python RDD of key-value pairs (of form ``RDD[(K, V)]``) to any Hadoop file 

system, using the old Hadoop OutputFormat API (mapred package). Key and value types 

will be inferred if not specified. Keys and values are converted for output using either 

user specified converters or "org.apache.spark.api.python.JavaToWritableConverter". The 

`conf` is applied on top of the base Hadoop conf associated with the SparkContext 

of this RDD to create a merged Hadoop MapReduce job configuration for saving the data. 

 

Parameters 

---------- 

path : str 

path to Hadoop file 

outputFormatClass : str 

fully qualified classname of Hadoop OutputFormat 

(e.g. "org.apache.hadoop.mapred.SequenceFileOutputFormat") 

keyClass : str, optional 

fully qualified classname of key Writable class 

(e.g. "org.apache.hadoop.io.IntWritable", None by default) 

valueClass : str, optional 

fully qualified classname of value Writable class 

(e.g. "org.apache.hadoop.io.Text", None by default) 

keyConverter : str, optional 

fully qualified classname of key converter (None by default) 

valueConverter : str, optional 

fully qualified classname of value converter (None by default) 

conf : dict, optional 

(None by default) 

compressionCodecClass : str 

fully qualified classname of the compression codec class 

i.e. "org.apache.hadoop.io.compress.GzipCodec" (None by default) 

""" 

jconf = self.ctx._dictToJavaMap(conf) 

pickledRDD = self._pickled() 

self.ctx._jvm.PythonRDD.saveAsHadoopFile(pickledRDD._jrdd, True, path, 

outputFormatClass, 

keyClass, valueClass, 

keyConverter, valueConverter, 

jconf, compressionCodecClass) 

 

def saveAsSequenceFile(self, path, compressionCodecClass=None): 

""" 

Output a Python RDD of key-value pairs (of form ``RDD[(K, V)]``) to any Hadoop file 

system, using the "org.apache.hadoop.io.Writable" types that we convert from the 

RDD's key and value types. The mechanism is as follows: 

 

1. Pyrolite is used to convert pickled Python RDD into RDD of Java objects. 

2. Keys and values of this Java RDD are converted to Writables and written out. 

 

Parameters 

---------- 

path : str 

path to sequence file 

compressionCodecClass : str, optional 

fully qualified classname of the compression codec class 

i.e. "org.apache.hadoop.io.compress.GzipCodec" (None by default) 

""" 

pickledRDD = self._pickled() 

self.ctx._jvm.PythonRDD.saveAsSequenceFile(pickledRDD._jrdd, True, 

path, compressionCodecClass) 

 

def saveAsPickleFile(self, path, batchSize=10): 

""" 

Save this RDD as a SequenceFile of serialized objects. The serializer 

used is :class:`pyspark.serializers.PickleSerializer`, default batch size 

is 10. 

 

Examples 

-------- 

>>> from tempfile import NamedTemporaryFile 

>>> tmpFile = NamedTemporaryFile(delete=True) 

>>> tmpFile.close() 

>>> sc.parallelize([1, 2, 'spark', 'rdd']).saveAsPickleFile(tmpFile.name, 3) 

>>> sorted(sc.pickleFile(tmpFile.name, 5).map(str).collect()) 

['1', '2', 'rdd', 'spark'] 

""" 

1765 ↛ 1766line 1765 didn't jump to line 1766, because the condition on line 1765 was never true if batchSize == 0: 

ser = AutoBatchedSerializer(PickleSerializer()) 

else: 

ser = BatchedSerializer(PickleSerializer(), batchSize) 

self._reserialize(ser)._jrdd.saveAsObjectFile(path) 

 

def saveAsTextFile(self, path, compressionCodecClass=None): 

""" 

Save this RDD as a text file, using string representations of elements. 

 

Parameters 

---------- 

path : str 

path to text file 

compressionCodecClass : str, optional 

fully qualified classname of the compression codec class 

i.e. "org.apache.hadoop.io.compress.GzipCodec" (None by default) 

 

Examples 

-------- 

>>> from tempfile import NamedTemporaryFile 

>>> tempFile = NamedTemporaryFile(delete=True) 

>>> tempFile.close() 

>>> sc.parallelize(range(10)).saveAsTextFile(tempFile.name) 

>>> from fileinput import input 

>>> from glob import glob 

>>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) 

'0\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n' 

 

Empty lines are tolerated when saving to text files. 

 

>>> from tempfile import NamedTemporaryFile 

>>> tempFile2 = NamedTemporaryFile(delete=True) 

>>> tempFile2.close() 

>>> sc.parallelize(['', 'foo', '', 'bar', '']).saveAsTextFile(tempFile2.name) 

>>> ''.join(sorted(input(glob(tempFile2.name + "/part-0000*")))) 

'\\n\\n\\nbar\\nfoo\\n' 

 

Using compressionCodecClass 

 

>>> from tempfile import NamedTemporaryFile 

>>> tempFile3 = NamedTemporaryFile(delete=True) 

>>> tempFile3.close() 

>>> codec = "org.apache.hadoop.io.compress.GzipCodec" 

>>> sc.parallelize(['foo', 'bar']).saveAsTextFile(tempFile3.name, codec) 

>>> from fileinput import input, hook_compressed 

>>> result = sorted(input(glob(tempFile3.name + "/part*.gz"), openhook=hook_compressed)) 

>>> b''.join(result).decode('utf-8') 

'bar\\nfoo\\n' 

""" 

def func(split, iterator): 

for x in iterator: 

if not isinstance(x, (str, bytes)): 

x = str(x) 

if isinstance(x, str): 

x = x.encode("utf-8") 

yield x 

keyed = self.mapPartitionsWithIndex(func) 

keyed._bypass_serializer = True 

if compressionCodecClass: 

compressionCodec = self.ctx._jvm.java.lang.Class.forName(compressionCodecClass) 

keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path, compressionCodec) 

else: 

keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path) 

 

# Pair functions 

 

def collectAsMap(self): 

""" 

Return the key-value pairs in this RDD to the master as a dictionary. 

 

Notes 

----- 

This method should only be used if the resulting data is expected 

to be small, as all the data is loaded into the driver's memory. 

 

Examples 

-------- 

>>> m = sc.parallelize([(1, 2), (3, 4)]).collectAsMap() 

>>> m[1] 

2 

>>> m[3] 

4 

""" 

return dict(self.collect()) 

 

def keys(self): 

""" 

Return an RDD with the keys of each tuple. 

 

Examples 

-------- 

>>> m = sc.parallelize([(1, 2), (3, 4)]).keys() 

>>> m.collect() 

[1, 3] 

""" 

return self.map(lambda x: x[0]) 

 

def values(self): 

""" 

Return an RDD with the values of each tuple. 

 

Examples 

-------- 

>>> m = sc.parallelize([(1, 2), (3, 4)]).values() 

>>> m.collect() 

[2, 4] 

""" 

return self.map(lambda x: x[1]) 

 

def reduceByKey(self, func, numPartitions=None, partitionFunc=portable_hash): 

""" 

Merge the values for each key using an associative and commutative reduce function. 

 

This will also perform the merging locally on each mapper before 

sending results to a reducer, similarly to a "combiner" in MapReduce. 

 

Output will be partitioned with `numPartitions` partitions, or 

the default parallelism level if `numPartitions` is not specified. 

Default partitioner is hash-partition. 

 

Examples 

-------- 

>>> from operator import add 

>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) 

>>> sorted(rdd.reduceByKey(add).collect()) 

[('a', 2), ('b', 1)] 

""" 

return self.combineByKey(lambda x: x, func, func, numPartitions, partitionFunc) 

 

def reduceByKeyLocally(self, func): 

""" 

Merge the values for each key using an associative and commutative reduce function, but 

return the results immediately to the master as a dictionary. 

 

This will also perform the merging locally on each mapper before 

sending results to a reducer, similarly to a "combiner" in MapReduce. 

 

Examples 

-------- 

>>> from operator import add 

>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) 

>>> sorted(rdd.reduceByKeyLocally(add).items()) 

[('a', 2), ('b', 1)] 

""" 

func = fail_on_stopiteration(func) 

 

def reducePartition(iterator): 

m = {} 

for k, v in iterator: 

m[k] = func(m[k], v) if k in m else v 

yield m 

 

def mergeMaps(m1, m2): 

for k, v in m2.items(): 

m1[k] = func(m1[k], v) if k in m1 else v 

return m1 

return self.mapPartitions(reducePartition).reduce(mergeMaps) 

 

def countByKey(self): 

""" 

Count the number of elements for each key, and return the result to the 

master as a dictionary. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) 

>>> sorted(rdd.countByKey().items()) 

[('a', 2), ('b', 1)] 

""" 

return self.map(lambda x: x[0]).countByValue() 

 

def join(self, other, numPartitions=None): 

""" 

Return an RDD containing all pairs of elements with matching keys in 

`self` and `other`. 

 

Each pair of elements will be returned as a (k, (v1, v2)) tuple, where 

(k, v1) is in `self` and (k, v2) is in `other`. 

 

Performs a hash join across the cluster. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 4)]) 

>>> y = sc.parallelize([("a", 2), ("a", 3)]) 

>>> sorted(x.join(y).collect()) 

[('a', (1, 2)), ('a', (1, 3))] 

""" 

return python_join(self, other, numPartitions) 

 

def leftOuterJoin(self, other, numPartitions=None): 

""" 

Perform a left outer join of `self` and `other`. 

 

For each element (k, v) in `self`, the resulting RDD will either 

contain all pairs (k, (v, w)) for w in `other`, or the pair 

(k, (v, None)) if no elements in `other` have key k. 

 

Hash-partitions the resulting RDD into the given number of partitions. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 4)]) 

>>> y = sc.parallelize([("a", 2)]) 

>>> sorted(x.leftOuterJoin(y).collect()) 

[('a', (1, 2)), ('b', (4, None))] 

""" 

return python_left_outer_join(self, other, numPartitions) 

 

def rightOuterJoin(self, other, numPartitions=None): 

""" 

Perform a right outer join of `self` and `other`. 

 

For each element (k, w) in `other`, the resulting RDD will either 

contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w)) 

if no elements in `self` have key k. 

 

Hash-partitions the resulting RDD into the given number of partitions. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 4)]) 

>>> y = sc.parallelize([("a", 2)]) 

>>> sorted(y.rightOuterJoin(x).collect()) 

[('a', (2, 1)), ('b', (None, 4))] 

""" 

return python_right_outer_join(self, other, numPartitions) 

 

def fullOuterJoin(self, other, numPartitions=None): 

""" 

Perform a right outer join of `self` and `other`. 

 

For each element (k, v) in `self`, the resulting RDD will either 

contain all pairs (k, (v, w)) for w in `other`, or the pair 

(k, (v, None)) if no elements in `other` have key k. 

 

Similarly, for each element (k, w) in `other`, the resulting RDD will 

either contain all pairs (k, (v, w)) for v in `self`, or the pair 

(k, (None, w)) if no elements in `self` have key k. 

 

Hash-partitions the resulting RDD into the given number of partitions. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 4)]) 

>>> y = sc.parallelize([("a", 2), ("c", 8)]) 

>>> sorted(x.fullOuterJoin(y).collect()) 

[('a', (1, 2)), ('b', (4, None)), ('c', (None, 8))] 

""" 

return python_full_outer_join(self, other, numPartitions) 

 

# TODO: add option to control map-side combining 

# portable_hash is used as default, because builtin hash of None is different 

# cross machines. 

def partitionBy(self, numPartitions, partitionFunc=portable_hash): 

""" 

Return a copy of the RDD partitioned using the specified partitioner. 

 

Examples 

-------- 

>>> pairs = sc.parallelize([1, 2, 3, 4, 2, 4, 1]).map(lambda x: (x, x)) 

>>> sets = pairs.partitionBy(2).glom().collect() 

>>> len(set(sets[0]).intersection(set(sets[1]))) 

0 

""" 

if numPartitions is None: 

numPartitions = self._defaultReducePartitions() 

partitioner = Partitioner(numPartitions, partitionFunc) 

if self.partitioner == partitioner: 

return self 

 

# Transferring O(n) objects to Java is too expensive. 

# Instead, we'll form the hash buckets in Python, 

# transferring O(numPartitions) objects to Java. 

# Each object is a (splitNumber, [objects]) pair. 

# In order to avoid too huge objects, the objects are 

# grouped into chunks. 

outputSerializer = self.ctx._unbatched_serializer 

 

limit = (self._memory_limit() / 2) 

 

def add_shuffle_key(split, iterator): 

 

buckets = defaultdict(list) 

c, batch = 0, min(10 * numPartitions, 1000) 

 

for k, v in iterator: 

buckets[partitionFunc(k) % numPartitions].append((k, v)) 

c += 1 

 

# check used memory and avg size of chunk of objects 

if (c % 1000 == 0 and get_used_memory() > limit 

or c > batch): 

n, size = len(buckets), 0 

for split in list(buckets.keys()): 

yield pack_long(split) 

d = outputSerializer.dumps(buckets[split]) 

del buckets[split] 

yield d 

size += len(d) 

 

avg = int(size / n) >> 20 

# let 1M < avg < 10M 

2069 ↛ 2071line 2069 didn't jump to line 2071, because the condition on line 2069 was never false if avg < 1: 

batch = min(sys.maxsize, batch * 1.5) 

elif avg > 10: 

batch = max(int(batch / 1.5), 1) 

c = 0 

 

for split, items in buckets.items(): 

yield pack_long(split) 

yield outputSerializer.dumps(items) 

 

keyed = self.mapPartitionsWithIndex(add_shuffle_key, preservesPartitioning=True) 

keyed._bypass_serializer = True 

with SCCallSiteSync(self.context) as css: 

pairRDD = self.ctx._jvm.PairwiseRDD( 

keyed._jrdd.rdd()).asJavaPairRDD() 

jpartitioner = self.ctx._jvm.PythonPartitioner(numPartitions, 

id(partitionFunc)) 

jrdd = self.ctx._jvm.PythonRDD.valueOfPair(pairRDD.partitionBy(jpartitioner)) 

rdd = RDD(jrdd, self.ctx, BatchedSerializer(outputSerializer)) 

rdd.partitioner = partitioner 

return rdd 

 

# TODO: add control over map-side aggregation 

def combineByKey(self, createCombiner, mergeValue, mergeCombiners, 

numPartitions=None, partitionFunc=portable_hash): 

""" 

Generic function to combine the elements for each key using a custom 

set of aggregation functions. 

 

Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined 

type" C. 

 

Users provide three functions: 

 

- `createCombiner`, which turns a V into a C (e.g., creates 

a one-element list) 

- `mergeValue`, to merge a V into a C (e.g., adds it to the end of 

a list) 

- `mergeCombiners`, to combine two C's into a single one (e.g., merges 

the lists) 

 

To avoid memory allocation, both mergeValue and mergeCombiners are allowed to 

modify and return their first argument instead of creating a new C. 

 

In addition, users can control the partitioning of the output RDD. 

 

Notes 

----- 

V and C can be different -- for example, one might group an RDD of type 

(Int, Int) into an RDD of type (Int, List[Int]). 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 2)]) 

>>> def to_list(a): 

... return [a] 

... 

>>> def append(a, b): 

... a.append(b) 

... return a 

... 

>>> def extend(a, b): 

... a.extend(b) 

... return a 

... 

>>> sorted(x.combineByKey(to_list, append, extend).collect()) 

[('a', [1, 2]), ('b', [1])] 

""" 

if numPartitions is None: 

numPartitions = self._defaultReducePartitions() 

 

serializer = self.ctx.serializer 

memory = self._memory_limit() 

agg = Aggregator(createCombiner, mergeValue, mergeCombiners) 

 

def combineLocally(iterator): 

merger = ExternalMerger(agg, memory * 0.9, serializer) 

merger.mergeValues(iterator) 

return merger.items() 

 

locally_combined = self.mapPartitions(combineLocally, preservesPartitioning=True) 

shuffled = locally_combined.partitionBy(numPartitions, partitionFunc) 

 

def _mergeCombiners(iterator): 

merger = ExternalMerger(agg, memory, serializer) 

merger.mergeCombiners(iterator) 

return merger.items() 

 

return shuffled.mapPartitions(_mergeCombiners, preservesPartitioning=True) 

 

def aggregateByKey(self, zeroValue, seqFunc, combFunc, numPartitions=None, 

partitionFunc=portable_hash): 

""" 

Aggregate the values of each key, using given combine functions and a neutral 

"zero value". This function can return a different result type, U, than the type 

of the values in this RDD, V. Thus, we need one operation for merging a V into 

a U and one operation for merging two U's, The former operation is used for merging 

values within a partition, and the latter is used for merging values between 

partitions. To avoid memory allocation, both of these functions are 

allowed to modify and return their first argument instead of creating a new U. 

""" 

def createZero(): 

return copy.deepcopy(zeroValue) 

 

return self.combineByKey( 

lambda v: seqFunc(createZero(), v), seqFunc, combFunc, numPartitions, partitionFunc) 

 

def foldByKey(self, zeroValue, func, numPartitions=None, partitionFunc=portable_hash): 

""" 

Merge the values for each key using an associative function "func" 

and a neutral "zeroValue" which may be added to the result an 

arbitrary number of times, and must not change the result 

(e.g., 0 for addition, or 1 for multiplication.). 

 

Examples 

-------- 

>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) 

>>> from operator import add 

>>> sorted(rdd.foldByKey(0, add).collect()) 

[('a', 2), ('b', 1)] 

""" 

def createZero(): 

return copy.deepcopy(zeroValue) 

 

return self.combineByKey(lambda v: func(createZero(), v), func, func, numPartitions, 

partitionFunc) 

 

def _memory_limit(self): 

return _parse_memory(self.ctx._conf.get("spark.python.worker.memory", "512m")) 

 

# TODO: support variant with custom partitioner 

def groupByKey(self, numPartitions=None, partitionFunc=portable_hash): 

""" 

Group the values for each key in the RDD into a single sequence. 

Hash-partitions the resulting RDD with numPartitions partitions. 

 

Notes 

----- 

If you are grouping in order to perform an aggregation (such as a 

sum or average) over each key, using reduceByKey or aggregateByKey will 

provide much better performance. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) 

>>> sorted(rdd.groupByKey().mapValues(len).collect()) 

[('a', 2), ('b', 1)] 

>>> sorted(rdd.groupByKey().mapValues(list).collect()) 

[('a', [1, 1]), ('b', [1])] 

""" 

def createCombiner(x): 

return [x] 

 

def mergeValue(xs, x): 

xs.append(x) 

return xs 

 

def mergeCombiners(a, b): 

a.extend(b) 

return a 

 

memory = self._memory_limit() 

serializer = self._jrdd_deserializer 

agg = Aggregator(createCombiner, mergeValue, mergeCombiners) 

 

def combine(iterator): 

merger = ExternalMerger(agg, memory * 0.9, serializer) 

merger.mergeValues(iterator) 

return merger.items() 

 

locally_combined = self.mapPartitions(combine, preservesPartitioning=True) 

shuffled = locally_combined.partitionBy(numPartitions, partitionFunc) 

 

def groupByKey(it): 

merger = ExternalGroupBy(agg, memory, serializer) 

merger.mergeCombiners(it) 

return merger.items() 

 

return shuffled.mapPartitions(groupByKey, True).mapValues(ResultIterable) 

 

def flatMapValues(self, f): 

""" 

Pass each value in the key-value pair RDD through a flatMap function 

without changing the keys; this also retains the original RDD's 

partitioning. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])]) 

>>> def f(x): return x 

>>> x.flatMapValues(f).collect() 

[('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')] 

""" 

flat_map_fn = lambda kv: ((kv[0], x) for x in f(kv[1])) 

return self.flatMap(flat_map_fn, preservesPartitioning=True) 

 

def mapValues(self, f): 

""" 

Pass each value in the key-value pair RDD through a map function 

without changing the keys; this also retains the original RDD's 

partitioning. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])]) 

>>> def f(x): return len(x) 

>>> x.mapValues(f).collect() 

[('a', 3), ('b', 1)] 

""" 

map_values_fn = lambda kv: (kv[0], f(kv[1])) 

return self.map(map_values_fn, preservesPartitioning=True) 

 

def groupWith(self, other, *others): 

""" 

Alias for cogroup but with support for multiple RDDs. 

 

Examples 

-------- 

>>> w = sc.parallelize([("a", 5), ("b", 6)]) 

>>> x = sc.parallelize([("a", 1), ("b", 4)]) 

>>> y = sc.parallelize([("a", 2)]) 

>>> z = sc.parallelize([("b", 42)]) 

>>> [(x, tuple(map(list, y))) for x, y in sorted(list(w.groupWith(x, y, z).collect()))] 

[('a', ([5], [1], [2], [])), ('b', ([6], [4], [], [42]))] 

 

""" 

return python_cogroup((self, other) + others, numPartitions=None) 

 

# TODO: add variant with custom partitioner 

def cogroup(self, other, numPartitions=None): 

""" 

For each key k in `self` or `other`, return a resulting RDD that 

contains a tuple with the list of values for that key in `self` as 

well as `other`. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 4)]) 

>>> y = sc.parallelize([("a", 2)]) 

>>> [(x, tuple(map(list, y))) for x, y in sorted(list(x.cogroup(y).collect()))] 

[('a', ([1], [2])), ('b', ([4], []))] 

""" 

return python_cogroup((self, other), numPartitions) 

 

def sampleByKey(self, withReplacement, fractions, seed=None): 

""" 

Return a subset of this RDD sampled by key (via stratified sampling). 

Create a sample of this RDD using variable sampling rates for 

different keys as specified by fractions, a key to sampling rate map. 

 

Examples 

-------- 

>>> fractions = {"a": 0.2, "b": 0.1} 

>>> rdd = sc.parallelize(fractions.keys()).cartesian(sc.parallelize(range(0, 1000))) 

>>> sample = dict(rdd.sampleByKey(False, fractions, 2).groupByKey().collect()) 

>>> 100 < len(sample["a"]) < 300 and 50 < len(sample["b"]) < 150 

True 

>>> max(sample["a"]) <= 999 and min(sample["a"]) >= 0 

True 

>>> max(sample["b"]) <= 999 and min(sample["b"]) >= 0 

True 

""" 

for fraction in fractions.values(): 

assert fraction >= 0.0, "Negative fraction value: %s" % fraction 

return self.mapPartitionsWithIndex( 

RDDStratifiedSampler(withReplacement, fractions, seed).func, True) 

 

def subtractByKey(self, other, numPartitions=None): 

""" 

Return each (key, value) pair in `self` that has no pair with matching 

key in `other`. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 2)]) 

>>> y = sc.parallelize([("a", 3), ("c", None)]) 

>>> sorted(x.subtractByKey(y).collect()) 

[('b', 4), ('b', 5)] 

""" 

def filter_func(pair): 

key, (val1, val2) = pair 

return val1 and not val2 

return self.cogroup(other, numPartitions).filter(filter_func).flatMapValues(lambda x: x[0]) 

 

def subtract(self, other, numPartitions=None): 

""" 

Return each value in `self` that is not contained in `other`. 

 

Examples 

-------- 

>>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 3)]) 

>>> y = sc.parallelize([("a", 3), ("c", None)]) 

>>> sorted(x.subtract(y).collect()) 

[('a', 1), ('b', 4), ('b', 5)] 

""" 

# note: here 'True' is just a placeholder 

rdd = other.map(lambda x: (x, True)) 

return self.map(lambda x: (x, True)).subtractByKey(rdd, numPartitions).keys() 

 

def keyBy(self, f): 

""" 

Creates tuples of the elements in this RDD by applying `f`. 

 

Examples 

-------- 

>>> x = sc.parallelize(range(0,3)).keyBy(lambda x: x*x) 

>>> y = sc.parallelize(zip(range(0,5), range(0,5))) 

>>> [(x, list(map(list, y))) for x, y in sorted(x.cogroup(y).collect())] 

[(0, [[0], [0]]), (1, [[1], [1]]), (2, [[], [2]]), (3, [[], [3]]), (4, [[2], [4]])] 

""" 

return self.map(lambda x: (f(x), x)) 

 

def repartition(self, numPartitions): 

""" 

Return a new RDD that has exactly numPartitions partitions. 

 

Can increase or decrease the level of parallelism in this RDD. 

Internally, this uses a shuffle to redistribute data. 

If you are decreasing the number of partitions in this RDD, consider 

using `coalesce`, which can avoid performing a shuffle. 

 

Examples 

-------- 

>>> rdd = sc.parallelize([1,2,3,4,5,6,7], 4) 

>>> sorted(rdd.glom().collect()) 

[[1], [2, 3], [4, 5], [6, 7]] 

>>> len(rdd.repartition(2).glom().collect()) 

2 

>>> len(rdd.repartition(10).glom().collect()) 

10 

""" 

return self.coalesce(numPartitions, shuffle=True) 

 

def coalesce(self, numPartitions, shuffle=False): 

""" 

Return a new RDD that is reduced into `numPartitions` partitions. 

 

Examples 

-------- 

>>> sc.parallelize([1, 2, 3, 4, 5], 3).glom().collect() 

[[1], [2, 3], [4, 5]] 

>>> sc.parallelize([1, 2, 3, 4, 5], 3).coalesce(1).glom().collect() 

[[1, 2, 3, 4, 5]] 

""" 

if shuffle: 

# Decrease the batch size in order to distribute evenly the elements across output 

# partitions. Otherwise, repartition will possibly produce highly skewed partitions. 

batchSize = min(10, self.ctx._batchSize or 1024) 

ser = BatchedSerializer(PickleSerializer(), batchSize) 

selfCopy = self._reserialize(ser) 

jrdd_deserializer = selfCopy._jrdd_deserializer 

jrdd = selfCopy._jrdd.coalesce(numPartitions, shuffle) 

else: 

jrdd_deserializer = self._jrdd_deserializer 

jrdd = self._jrdd.coalesce(numPartitions, shuffle) 

return RDD(jrdd, self.ctx, jrdd_deserializer) 

 

def zip(self, other): 

""" 

Zips this RDD with another one, returning key-value pairs with the 

first element in each RDD second element in each RDD, etc. Assumes 

that the two RDDs have the same number of partitions and the same 

number of elements in each partition (e.g. one was made through 

a map on the other). 

 

Examples 

-------- 

>>> x = sc.parallelize(range(0,5)) 

>>> y = sc.parallelize(range(1000, 1005)) 

>>> x.zip(y).collect() 

[(0, 1000), (1, 1001), (2, 1002), (3, 1003), (4, 1004)] 

""" 

def get_batch_size(ser): 

if isinstance(ser, BatchedSerializer): 

return ser.batchSize 

return 1 # not batched 

 

def batch_as(rdd, batchSize): 

return rdd._reserialize(BatchedSerializer(PickleSerializer(), batchSize)) 

 

my_batch = get_batch_size(self._jrdd_deserializer) 

other_batch = get_batch_size(other._jrdd_deserializer) 

if my_batch != other_batch or not my_batch: 

# use the smallest batchSize for both of them 

batchSize = min(my_batch, other_batch) 

if batchSize <= 0: 

# auto batched or unlimited 

batchSize = 100 

other = batch_as(other, batchSize) 

self = batch_as(self, batchSize) 

 

if self.getNumPartitions() != other.getNumPartitions(): 

raise ValueError("Can only zip with RDD which has the same number of partitions") 

 

# There will be an Exception in JVM if there are different number 

# of items in each partitions. 

pairRDD = self._jrdd.zip(other._jrdd) 

deserializer = PairDeserializer(self._jrdd_deserializer, 

other._jrdd_deserializer) 

return RDD(pairRDD, self.ctx, deserializer) 

 

def zipWithIndex(self): 

""" 

Zips this RDD with its element indices. 

 

The ordering is first based on the partition index and then the 

ordering of items within each partition. So the first item in 

the first partition gets index 0, and the last item in the last 

partition receives the largest index. 

 

This method needs to trigger a spark job when this RDD contains 

more than one partitions. 

 

Examples 

-------- 

>>> sc.parallelize(["a", "b", "c", "d"], 3).zipWithIndex().collect() 

[('a', 0), ('b', 1), ('c', 2), ('d', 3)] 

""" 

starts = [0] 

2488 ↛ 2493line 2488 didn't jump to line 2493, because the condition on line 2488 was never false if self.getNumPartitions() > 1: 

nums = self.mapPartitions(lambda it: [sum(1 for i in it)]).collect() 

for i in range(len(nums) - 1): 

starts.append(starts[-1] + nums[i]) 

 

def func(k, it): 

for i, v in enumerate(it, starts[k]): 

yield v, i 

 

return self.mapPartitionsWithIndex(func) 

 

def zipWithUniqueId(self): 

""" 

Zips this RDD with generated unique Long ids. 

 

Items in the kth partition will get ids k, n+k, 2*n+k, ..., where 

n is the number of partitions. So there may exist gaps, but this 

method won't trigger a spark job, which is different from 

:meth:`zipWithIndex`. 

 

Examples 

-------- 

>>> sc.parallelize(["a", "b", "c", "d", "e"], 3).zipWithUniqueId().collect() 

[('a', 0), ('b', 1), ('c', 4), ('d', 2), ('e', 5)] 

""" 

n = self.getNumPartitions() 

 

def func(k, it): 

for i, v in enumerate(it): 

yield v, i * n + k 

 

return self.mapPartitionsWithIndex(func) 

 

def name(self): 

""" 

Return the name of this RDD. 

""" 

n = self._jrdd.name() 

2526 ↛ exitline 2526 didn't return from function 'name', because the condition on line 2526 was never false if n: 

return n 

 

def setName(self, name): 

""" 

Assign a name to this RDD. 

 

Examples 

-------- 

>>> rdd1 = sc.parallelize([1, 2]) 

>>> rdd1.setName('RDD1').name() 

'RDD1' 

""" 

self._jrdd.setName(name) 

return self 

 

def toDebugString(self): 

""" 

A description of this RDD and its recursive dependencies for debugging. 

""" 

debug_string = self._jrdd.toDebugString() 

if debug_string: 

return debug_string.encode('utf-8') 

 

def getStorageLevel(self): 

""" 

Get the RDD's current storage level. 

 

Examples 

-------- 

>>> rdd1 = sc.parallelize([1,2]) 

>>> rdd1.getStorageLevel() 

StorageLevel(False, False, False, False, 1) 

>>> print(rdd1.getStorageLevel()) 

Serialized 1x Replicated 

""" 

java_storage_level = self._jrdd.getStorageLevel() 

storage_level = StorageLevel(java_storage_level.useDisk(), 

java_storage_level.useMemory(), 

java_storage_level.useOffHeap(), 

java_storage_level.deserialized(), 

java_storage_level.replication()) 

return storage_level 

 

def _defaultReducePartitions(self): 

""" 

Returns the default number of partitions to use during reduce tasks (e.g., groupBy). 

If spark.default.parallelism is set, then we'll use the value from SparkContext 

defaultParallelism, otherwise we'll use the number of partitions in this RDD. 

 

This mirrors the behavior of the Scala Partitioner#defaultPartitioner, intended to reduce 

the likelihood of OOMs. Once PySpark adopts Partitioner-based APIs, this behavior will 

be inherent. 

""" 

2580 ↛ 2581line 2580 didn't jump to line 2581, because the condition on line 2580 was never true if self.ctx._conf.contains("spark.default.parallelism"): 

return self.ctx.defaultParallelism 

else: 

return self.getNumPartitions() 

 

def lookup(self, key): 

""" 

Return the list of values in the RDD for key `key`. This operation 

is done efficiently if the RDD has a known partitioner by only 

searching the partition that the key maps to. 

 

Examples 

-------- 

>>> l = range(1000) 

>>> rdd = sc.parallelize(zip(l, l), 10) 

>>> rdd.lookup(42) # slow 

[42] 

>>> sorted = rdd.sortByKey() 

>>> sorted.lookup(42) # fast 

[42] 

>>> sorted.lookup(1024) 

[] 

>>> rdd2 = sc.parallelize([(('a', 'b'), 'c')]).groupByKey() 

>>> list(rdd2.lookup(('a', 'b'))[0]) 

['c'] 

""" 

values = self.filter(lambda kv: kv[0] == key).values() 

 

if self.partitioner is not None: 

return self.ctx.runJob(values, lambda x: x, [self.partitioner(key)]) 

 

return values.collect() 

 

def _to_java_object_rdd(self): 

""" Return a JavaRDD of Object by unpickling 

 

It will convert each Python object into Java object by Pyrolite, whenever the 

RDD is serialized in batch or not. 

""" 

rdd = self._pickled() 

return self.ctx._jvm.SerDeUtil.pythonToJava(rdd._jrdd, True) 

 

def countApprox(self, timeout, confidence=0.95): 

""" 

Approximate version of count() that returns a potentially incomplete 

result within a timeout, even if not all tasks have finished. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(1000), 10) 

>>> rdd.countApprox(1000, 1.0) 

1000 

""" 

drdd = self.mapPartitions(lambda it: [float(sum(1 for i in it))]) 

return int(drdd.sumApprox(timeout, confidence)) 

 

def sumApprox(self, timeout, confidence=0.95): 

""" 

Approximate operation to return the sum within a timeout 

or meet the confidence. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(1000), 10) 

>>> r = sum(range(1000)) 

>>> abs(rdd.sumApprox(1000) - r) / r < 0.05 

True 

""" 

jrdd = self.mapPartitions(lambda it: [float(sum(it))])._to_java_object_rdd() 

jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd()) 

r = jdrdd.sumApprox(timeout, confidence).getFinalValue() 

return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high()) 

 

def meanApprox(self, timeout, confidence=0.95): 

""" 

Approximate operation to return the mean within a timeout 

or meet the confidence. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(1000), 10) 

>>> r = sum(range(1000)) / 1000.0 

>>> abs(rdd.meanApprox(1000) - r) / r < 0.05 

True 

""" 

jrdd = self.map(float)._to_java_object_rdd() 

jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd()) 

r = jdrdd.meanApprox(timeout, confidence).getFinalValue() 

return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high()) 

 

def countApproxDistinct(self, relativeSD=0.05): 

""" 

Return approximate number of distinct elements in the RDD. 

 

Parameters 

---------- 

relativeSD : float, optional 

Relative accuracy. Smaller values create 

counters that require more space. 

It must be greater than 0.000017. 

 

Notes 

----- 

The algorithm used is based on streamlib's implementation of 

`"HyperLogLog in Practice: Algorithmic Engineering of a State 

of The Art Cardinality Estimation Algorithm", available here 

<https://doi.org/10.1145/2452376.2452456>`_. 

 

Examples 

-------- 

>>> n = sc.parallelize(range(1000)).map(str).countApproxDistinct() 

>>> 900 < n < 1100 

True 

>>> n = sc.parallelize([i % 20 for i in range(1000)]).countApproxDistinct() 

>>> 16 < n < 24 

True 

""" 

if relativeSD < 0.000017: 

raise ValueError("relativeSD should be greater than 0.000017") 

# the hash space in Java is 2^32 

hashRDD = self.map(lambda x: portable_hash(x) & 0xFFFFFFFF) 

return hashRDD._to_java_object_rdd().countApproxDistinct(relativeSD) 

 

def toLocalIterator(self, prefetchPartitions=False): 

""" 

Return an iterator that contains all of the elements in this RDD. 

The iterator will consume as much memory as the largest partition in this RDD. 

With prefetch it may consume up to the memory of the 2 largest partitions. 

 

Parameters 

---------- 

prefetchPartitions : bool, optional 

If Spark should pre-fetch the next partition 

before it is needed. 

 

Examples 

-------- 

>>> rdd = sc.parallelize(range(10)) 

>>> [x for x in rdd.toLocalIterator()] 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 

""" 

with SCCallSiteSync(self.context) as css: 

sock_info = self.ctx._jvm.PythonRDD.toLocalIteratorAndServe( 

self._jrdd.rdd(), 

prefetchPartitions) 

return _local_iterator_from_socket(sock_info, self._jrdd_deserializer) 

 

def barrier(self): 

""" 

Marks the current stage as a barrier stage, where Spark must launch all tasks together. 

In case of a task failure, instead of only restarting the failed task, Spark will abort the 

entire stage and relaunch all tasks for this stage. 

The barrier execution mode feature is experimental and it only handles limited scenarios. 

Please read the linked SPIP and design docs to understand the limitations and future plans. 

 

.. versionadded:: 2.4.0 

 

Returns 

------- 

:class:`RDDBarrier` 

instance that provides actions within a barrier stage. 

 

See Also 

-------- 

pyspark.BarrierTaskContext 

 

Notes 

----- 

For additional information see 

 

- `SPIP: Barrier Execution Mode <http://jira.apache.org/jira/browse/SPARK-24374>`_ 

- `Design Doc <https://jira.apache.org/jira/browse/SPARK-24582>`_ 

 

This API is experimental 

""" 

return RDDBarrier(self) 

 

def _is_barrier(self): 

""" 

Whether this RDD is in a barrier stage. 

""" 

return self._jrdd.rdd().isBarrier() 

 

def withResources(self, profile): 

""" 

Specify a :class:`pyspark.resource.ResourceProfile` to use when calculating this RDD. 

This is only supported on certain cluster managers and currently requires dynamic 

allocation to be enabled. It will result in new executors with the resources specified 

being acquired to calculate the RDD. 

 

.. versionadded:: 3.1.0 

 

Notes 

----- 

This API is experimental 

""" 

self.has_resource_profile = True 

if profile._java_resource_profile is not None: 

jrp = profile._java_resource_profile 

else: 

builder = self.ctx._jvm.org.apache.spark.resource.ResourceProfileBuilder() 

ereqs = ExecutorResourceRequests(self.ctx._jvm, profile._executor_resource_requests) 

treqs = TaskResourceRequests(self.ctx._jvm, profile._task_resource_requests) 

builder.require(ereqs._java_executor_resource_requests) 

builder.require(treqs._java_task_resource_requests) 

jrp = builder.build() 

 

self._jrdd.withResources(jrp) 

return self 

 

def getResourceProfile(self): 

""" 

Get the :class:`pyspark.resource.ResourceProfile` specified with this RDD or None 

if it wasn't specified. 

 

.. versionadded:: 3.1.0 

 

Returns 

------- 

:py:class:`pyspark.resource.ResourceProfile` 

The the user specified profile or None if none were specified 

 

Notes 

----- 

This API is experimental 

""" 

rp = self._jrdd.getResourceProfile() 

if rp is not None: 

return ResourceProfile(_java_resource_profile=rp) 

else: 

return None 

 

 

def _prepare_for_python_RDD(sc, command): 

# the serialized command will be compressed by broadcast 

ser = CloudPickleSerializer() 

pickled_command = ser.dumps(command) 

if len(pickled_command) > sc._jvm.PythonUtils.getBroadcastThreshold(sc._jsc): # Default 1M 

# The broadcast will have same life cycle as created PythonRDD 

broadcast = sc.broadcast(pickled_command) 

pickled_command = ser.dumps(broadcast) 

broadcast_vars = [x._jbroadcast for x in sc._pickled_broadcast_vars] 

sc._pickled_broadcast_vars.clear() 

return pickled_command, broadcast_vars, sc.environment, sc._python_includes 

 

 

def _wrap_function(sc, func, deserializer, serializer, profiler=None): 

assert deserializer, "deserializer should not be empty" 

assert serializer, "serializer should not be empty" 

command = (func, profiler, deserializer, serializer) 

pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command) 

return sc._jvm.PythonFunction(bytearray(pickled_command), env, includes, sc.pythonExec, 

sc.pythonVer, broadcast_vars, sc._javaAccumulator) 

 

 

class RDDBarrier(object): 

 

""" 

Wraps an RDD in a barrier stage, which forces Spark to launch tasks of this stage together. 

:class:`RDDBarrier` instances are created by :func:`RDD.barrier`. 

 

.. versionadded:: 2.4.0 

 

Notes 

----- 

This API is experimental 

""" 

 

def __init__(self, rdd): 

self.rdd = rdd 

 

def mapPartitions(self, f, preservesPartitioning=False): 

""" 

Returns a new RDD by applying a function to each partition of the wrapped RDD, 

where tasks are launched together in a barrier stage. 

The interface is the same as :func:`RDD.mapPartitions`. 

Please see the API doc there. 

 

.. versionadded:: 2.4.0 

 

Notes 

----- 

This API is experimental 

""" 

def func(s, iterator): 

return f(iterator) 

return PipelinedRDD(self.rdd, func, preservesPartitioning, isFromBarrier=True) 

 

def mapPartitionsWithIndex(self, f, preservesPartitioning=False): 

""" 

Returns a new RDD by applying a function to each partition of the wrapped RDD, while 

tracking the index of the original partition. And all tasks are launched together 

in a barrier stage. 

The interface is the same as :func:`RDD.mapPartitionsWithIndex`. 

Please see the API doc there. 

 

.. versionadded:: 3.0.0 

 

Notes 

----- 

This API is experimental 

""" 

return PipelinedRDD(self.rdd, f, preservesPartitioning, isFromBarrier=True) 

 

 

class PipelinedRDD(RDD): 

 

""" 

Examples 

-------- 

Pipelined maps: 

 

>>> rdd = sc.parallelize([1, 2, 3, 4]) 

>>> rdd.map(lambda x: 2 * x).cache().map(lambda x: 2 * x).collect() 

[4, 8, 12, 16] 

>>> rdd.map(lambda x: 2 * x).map(lambda x: 2 * x).collect() 

[4, 8, 12, 16] 

 

Pipelined reduces: 

 

>>> from operator import add 

>>> rdd.map(lambda x: 2 * x).reduce(add) 

20 

>>> rdd.flatMap(lambda x: [x, x]).reduce(add) 

20 

""" 

 

def __init__(self, prev, func, preservesPartitioning=False, isFromBarrier=False): 

if not isinstance(prev, PipelinedRDD) or not prev._is_pipelinable(): 

# This transformation is the first in its stage: 

self.func = func 

self.preservesPartitioning = preservesPartitioning 

self._prev_jrdd = prev._jrdd 

self._prev_jrdd_deserializer = prev._jrdd_deserializer 

else: 

prev_func = prev.func 

 

def pipeline_func(split, iterator): 

return func(split, prev_func(split, iterator)) 

self.func = pipeline_func 

self.preservesPartitioning = \ 

prev.preservesPartitioning and preservesPartitioning 

self._prev_jrdd = prev._prev_jrdd # maintain the pipeline 

self._prev_jrdd_deserializer = prev._prev_jrdd_deserializer 

self.is_cached = False 

self.has_resource_profile = False 

self.is_checkpointed = False 

self.ctx = prev.ctx 

self.prev = prev 

self._jrdd_val = None 

self._id = None 

self._jrdd_deserializer = self.ctx.serializer 

self._bypass_serializer = False 

self.partitioner = prev.partitioner if self.preservesPartitioning else None 

self.is_barrier = isFromBarrier or prev._is_barrier() 

 

def getNumPartitions(self): 

return self._prev_jrdd.partitions().size() 

 

@property 

def _jrdd(self): 

if self._jrdd_val: 

return self._jrdd_val 

if self._bypass_serializer: 

self._jrdd_deserializer = NoOpSerializer() 

 

if self.ctx.profiler_collector: 

profiler = self.ctx.profiler_collector.new_profiler(self.ctx) 

else: 

profiler = None 

 

wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer, 

self._jrdd_deserializer, profiler) 

python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(), wrapped_func, 

self.preservesPartitioning, self.is_barrier) 

self._jrdd_val = python_rdd.asJavaRDD() 

 

if profiler: 

self._id = self._jrdd_val.id() 

self.ctx.profiler_collector.add_profiler(self._id, profiler) 

return self._jrdd_val 

 

def id(self): 

if self._id is None: 

self._id = self._jrdd.id() 

return self._id 

 

def _is_pipelinable(self): 

return not (self.is_cached or self.is_checkpointed or self.has_resource_profile) 

 

def _is_barrier(self): 

return self.is_barrier 

 

 

def _test(): 

import doctest 

from pyspark.context import SparkContext 

globs = globals().copy() 

# The small batch size here ensures that we see multiple batches, 

# even in these small test examples: 

globs['sc'] = SparkContext('local[4]', 'PythonTest') 

(failure_count, test_count) = doctest.testmod( 

globs=globs, optionflags=doctest.ELLIPSIS) 

globs['sc'].stop() 

2984 ↛ 2985line 2984 didn't jump to line 2985, because the condition on line 2984 was never true if failure_count: 

sys.exit(-1) 

 

 

if __name__ == "__main__": 

_test()