Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import cProfile 

import pstats 

import os 

import atexit 

import sys 

 

from pyspark.accumulators import AccumulatorParam 

 

 

class ProfilerCollector(object): 

""" 

This class keeps track of different profilers on a per 

stage basis. Also this is used to create new profilers for 

the different stages. 

""" 

 

def __init__(self, profiler_cls, dump_path=None): 

self.profiler_cls = profiler_cls 

self.profile_dump_path = dump_path 

self.profilers = [] 

 

def new_profiler(self, ctx): 

""" Create a new profiler using class `profiler_cls` """ 

return self.profiler_cls(ctx) 

 

def add_profiler(self, id, profiler): 

""" Add a profiler for RDD `id` """ 

if not self.profilers: 

46 ↛ 47line 46 didn't jump to line 47, because the condition on line 46 was never true if self.profile_dump_path: 

atexit.register(self.dump_profiles, self.profile_dump_path) 

else: 

atexit.register(self.show_profiles) 

 

self.profilers.append([id, profiler, False]) 

 

def dump_profiles(self, path): 

""" Dump the profile stats into directory `path` """ 

for id, profiler, _ in self.profilers: 

profiler.dump(id, path) 

self.profilers = [] 

 

def show_profiles(self): 

""" Print the profile stats to stdout """ 

for i, (id, profiler, showed) in enumerate(self.profilers): 

if not showed and profiler: 

profiler.show(id) 

# mark it as showed 

self.profilers[i][2] = True 

 

 

class Profiler(object): 

""" 

PySpark supports custom profilers, this is to allow for different profilers to 

be used as well as outputting to different formats than what is provided in the 

BasicProfiler. 

 

A custom profiler has to define or inherit the following methods: 

profile - will produce a system profile of some sort. 

stats - return the collected stats. 

dump - dumps the profiles to a path 

add - adds a profile to the existing accumulated profile 

 

The profiler class is chosen when creating a SparkContext 

 

Examples 

-------- 

>>> from pyspark import SparkConf, SparkContext 

>>> from pyspark import BasicProfiler 

>>> class MyCustomProfiler(BasicProfiler): 

... def show(self, id): 

... print("My custom profiles for RDD:%s" % id) 

... 

>>> conf = SparkConf().set("spark.python.profile", "true") 

>>> sc = SparkContext('local', 'test', conf=conf, profiler_cls=MyCustomProfiler) 

>>> sc.parallelize(range(1000)).map(lambda x: 2 * x).take(10) 

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18] 

>>> sc.parallelize(range(1000)).count() 

1000 

>>> sc.show_profiles() 

My custom profiles for RDD:1 

My custom profiles for RDD:3 

>>> sc.stop() 

 

Notes 

----- 

This API is a developer API. 

""" 

 

def __init__(self, ctx): 

pass 

 

def profile(self, func): 

""" Do profiling on the function `func`""" 

raise NotImplementedError 

 

def stats(self): 

""" Return the collected profiling stats (pstats.Stats)""" 

raise NotImplementedError 

 

def show(self, id): 

""" Print the profile stats to stdout, id is the RDD id """ 

stats = self.stats() 

120 ↛ exitline 120 didn't return from function 'show', because the condition on line 120 was never false if stats: 

print("=" * 60) 

print("Profile of RDD<id=%d>" % id) 

print("=" * 60) 

stats.sort_stats("time", "cumulative").print_stats() 

 

def dump(self, id, path): 

""" Dump the profile into path, id is the RDD id """ 

128 ↛ 129line 128 didn't jump to line 129, because the condition on line 128 was never true if not os.path.exists(path): 

os.makedirs(path) 

stats = self.stats() 

131 ↛ exitline 131 didn't return from function 'dump', because the condition on line 131 was never false if stats: 

p = os.path.join(path, "rdd_%d.pstats" % id) 

stats.dump_stats(p) 

 

 

class PStatsParam(AccumulatorParam): 

"""PStatsParam is used to merge pstats.Stats""" 

 

@staticmethod 

def zero(value): 

return None 

 

@staticmethod 

def addInPlace(value1, value2): 

if value1 is None: 

return value2 

value1.add(value2) 

return value1 

 

 

class BasicProfiler(Profiler): 

""" 

BasicProfiler is the default profiler, which is implemented based on 

cProfile and Accumulator 

""" 

def __init__(self, ctx): 

Profiler.__init__(self, ctx) 

# Creates a new accumulator for combining the profiles of different 

# partitions of a stage 

self._accumulator = ctx.accumulator(None, PStatsParam) 

 

def profile(self, func): 

""" Runs and profiles the method to_profile passed in. A profile object is returned. """ 

pr = cProfile.Profile() 

pr.runcall(func) 

st = pstats.Stats(pr) 

st.stream = None # make it picklable 

st.strip_dirs() 

 

# Adds a new profile to the existing accumulated value 

self._accumulator.add(st) 

 

def stats(self): 

return self._accumulator.value 

 

 

if __name__ == "__main__": 

import doctest 

(failure_count, test_count) = doctest.testmod() 

180 ↛ 181line 180 didn't jump to line 181, because the condition on line 180 was never true if failure_count: 

sys.exit(-1)