Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #
.. versionadded:: 3.2.0 pandas API on Spark """
else: raise
import pyarrow
if ( LooseVersion(pyarrow.__version__) >= LooseVersion("2.0.0") and "PYARROW_IGNORE_TIMEZONE" not in os.environ ): import logging
logging.warning( "'PYARROW_IGNORE_TIMEZONE' environment variable was not set. It is required to " "set this environment variable to '1' in both driver and executor sides if you use " "pyarrow>=2.0.0. " "pandas-on-Spark will set it for you but it does not work if there is a Spark context " "already launched." ) os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
from pyspark.pandas.frame import DataFrame from pyspark.pandas.indexes.base import Index from pyspark.pandas.indexes.category import CategoricalIndex from pyspark.pandas.indexes.datetimes import DatetimeIndex from pyspark.pandas.indexes.multi import MultiIndex from pyspark.pandas.indexes.numeric import Float64Index, Int64Index from pyspark.pandas.series import Series from pyspark.pandas.groupby import NamedAgg
__all__ = [ # noqa: F405 "read_csv", "read_parquet", "to_datetime", "date_range", "from_pandas", "get_dummies", "DataFrame", "Series", "Index", "MultiIndex", "Int64Index", "Float64Index", "CategoricalIndex", "DatetimeIndex", "sql", "range", "concat", "melt", "get_option", "set_option", "reset_option", "read_sql_table", "read_sql_query", "read_sql", "options", "option_context", "NamedAgg", ]
def _auto_patch_spark() -> None: import os import logging
# Attach a usage logger. logger_module = os.getenv("KOALAS_USAGE_LOGGER", "") if logger_module != "": try: from pyspark.pandas import usage_logging
usage_logging.attach(logger_module) except Exception as e: logger = logging.getLogger("pyspark.pandas.usage_logger") logger.warning( "Tried to attach usage logger `{}`, but an exception was raised: {}".format( logger_module, str(e) ) )
_frame_has_class_getitem = False _series_has_class_getitem = False
def _auto_patch_pandas() -> None: import pandas as pd
# In order to use it in test cases. global _frame_has_class_getitem global _series_has_class_getitem
_frame_has_class_getitem = hasattr(pd.DataFrame, "__class_getitem__") _series_has_class_getitem = hasattr(pd.Series, "__class_getitem__")
if sys.version_info >= (3, 7): # Just in case pandas implements '__class_getitem__' later. if not _frame_has_class_getitem: pd.DataFrame.__class_getitem__ = lambda params: DataFrame.__class_getitem__(params)
if not _series_has_class_getitem: pd.Series.__class_getitem__ = lambda params: Series.__class_getitem__(params)
_auto_patch_spark() _auto_patch_pandas()
# Import after the usage logger is attached. from pyspark.pandas.config import get_option, options, option_context, reset_option, set_option from pyspark.pandas.namespace import * # F405 from pyspark.pandas.sql_processor import sql |