Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import sys 

import numpy as np 

 

from pyspark import SparkContext, since 

from pyspark.mllib.common import callMLlibFunc, inherit_doc 

from pyspark.mllib.linalg import Vectors, SparseVector, _convert_to_vector 

from pyspark.sql import DataFrame 

 

 

class MLUtils(object): 

 

""" 

Helper methods to load, save and pre-process data used in MLlib. 

 

.. versionadded:: 1.0.0 

""" 

 

@staticmethod 

def _parse_libsvm_line(line): 

""" 

Parses a line in LIBSVM format into (label, indices, values). 

""" 

items = line.split(None) 

label = float(items[0]) 

nnz = len(items) - 1 

indices = np.zeros(nnz, dtype=np.int32) 

values = np.zeros(nnz) 

for i in range(nnz): 

index, value = items[1 + i].split(":") 

indices[i] = int(index) - 1 

values[i] = float(value) 

return label, indices, values 

 

@staticmethod 

def _convert_labeled_point_to_libsvm(p): 

"""Converts a LabeledPoint to a string in LIBSVM format.""" 

from pyspark.mllib.regression import LabeledPoint 

assert isinstance(p, LabeledPoint) 

items = [str(p.label)] 

v = _convert_to_vector(p.features) 

if isinstance(v, SparseVector): 

nnz = len(v.indices) 

for i in range(nnz): 

items.append(str(v.indices[i] + 1) + ":" + str(v.values[i])) 

else: 

for i in range(len(v)): 

items.append(str(i + 1) + ":" + str(v[i])) 

return " ".join(items) 

 

@staticmethod 

def loadLibSVMFile(sc, path, numFeatures=-1, minPartitions=None): 

""" 

Loads labeled data in the LIBSVM format into an RDD of 

LabeledPoint. The LIBSVM format is a text-based format used by 

LIBSVM and LIBLINEAR. Each line represents a labeled sparse 

feature vector using the following format: 

 

label index1:value1 index2:value2 ... 

 

where the indices are one-based and in ascending order. This 

method parses each line into a LabeledPoint, where the feature 

indices are converted to zero-based. 

 

.. versionadded:: 1.0.0 

 

Parameters 

---------- 

sc : :py:class:`pyspark.SparkContext` 

Spark context 

path : str 

file or directory path in any Hadoop-supported file system URI 

numFeatures : int, optional 

number of features, which will be determined 

from the input data if a nonpositive value 

is given. This is useful when the dataset is 

already split into multiple files and you 

want to load them separately, because some 

features may not present in certain files, 

which leads to inconsistent feature 

dimensions. 

minPartitions : int, optional 

min number of partitions 

 

Returns 

------- 

:py:class:`pyspark.RDD` 

labeled data stored as an RDD of LabeledPoint 

 

Examples 

-------- 

>>> from tempfile import NamedTemporaryFile 

>>> from pyspark.mllib.util import MLUtils 

>>> from pyspark.mllib.regression import LabeledPoint 

>>> tempFile = NamedTemporaryFile(delete=True) 

>>> _ = tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0") 

>>> tempFile.flush() 

>>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect() 

>>> tempFile.close() 

>>> examples[0] 

LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0])) 

>>> examples[1] 

LabeledPoint(-1.0, (6,[],[])) 

>>> examples[2] 

LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0])) 

""" 

from pyspark.mllib.regression import LabeledPoint 

 

lines = sc.textFile(path, minPartitions) 

parsed = lines.map(lambda l: MLUtils._parse_libsvm_line(l)) 

127 ↛ 130line 127 didn't jump to line 130, because the condition on line 127 was never false if numFeatures <= 0: 

parsed.cache() 

numFeatures = parsed.map(lambda x: -1 if x[1].size == 0 else x[1][-1]).reduce(max) + 1 

return parsed.map(lambda x: LabeledPoint(x[0], Vectors.sparse(numFeatures, x[1], x[2]))) 

 

@staticmethod 

def saveAsLibSVMFile(data, dir): 

""" 

Save labeled data in LIBSVM format. 

 

.. versionadded:: 1.0.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

an RDD of LabeledPoint to be saved 

dir : str 

directory to save the data 

 

Examples 

-------- 

>>> from tempfile import NamedTemporaryFile 

>>> from fileinput import input 

>>> from pyspark.mllib.regression import LabeledPoint 

>>> from glob import glob 

>>> from pyspark.mllib.util import MLUtils 

>>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), 

... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] 

>>> tempFile = NamedTemporaryFile(delete=True) 

>>> tempFile.close() 

>>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name) 

>>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) 

'0.0 1:1.01 2:2.02 3:3.03\\n1.1 1:1.23 3:4.56\\n' 

""" 

lines = data.map(lambda p: MLUtils._convert_labeled_point_to_libsvm(p)) 

lines.saveAsTextFile(dir) 

 

@staticmethod 

def loadLabeledPoints(sc, path, minPartitions=None): 

""" 

Load labeled points saved using RDD.saveAsTextFile. 

 

.. versionadded:: 1.0.0 

 

Parameters 

---------- 

sc : :py:class:`pyspark.SparkContext` 

Spark context 

path : str 

file or directory path in any Hadoop-supported file system URI 

minPartitions : int, optional 

min number of partitions 

 

Returns 

------- 

:py:class:`pyspark.RDD` 

labeled data stored as an RDD of LabeledPoint 

 

Examples 

-------- 

>>> from tempfile import NamedTemporaryFile 

>>> from pyspark.mllib.util import MLUtils 

>>> from pyspark.mllib.regression import LabeledPoint 

>>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])), 

... LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] 

>>> tempFile = NamedTemporaryFile(delete=True) 

>>> tempFile.close() 

>>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name) 

>>> MLUtils.loadLabeledPoints(sc, tempFile.name).collect() 

[LabeledPoint(1.1, (3,[0,2],[-1.23,4.56e-07])), LabeledPoint(0.0, [1.01,2.02,3.03])] 

""" 

minPartitions = minPartitions or min(sc.defaultParallelism, 2) 

return callMLlibFunc("loadLabeledPoints", sc, path, minPartitions) 

 

@staticmethod 

@since("1.5.0") 

def appendBias(data): 

""" 

Returns a new vector with `1.0` (bias) appended to 

the end of the input vector. 

""" 

vec = _convert_to_vector(data) 

if isinstance(vec, SparseVector): 

newIndices = np.append(vec.indices, len(vec)) 

newValues = np.append(vec.values, 1.0) 

return SparseVector(len(vec) + 1, newIndices, newValues) 

else: 

return _convert_to_vector(np.append(vec.toArray(), 1.0)) 

 

@staticmethod 

@since("1.5.0") 

def loadVectors(sc, path): 

""" 

Loads vectors saved using `RDD[Vector].saveAsTextFile` 

with the default number of partitions. 

""" 

return callMLlibFunc("loadVectors", sc, path) 

 

@staticmethod 

def convertVectorColumnsToML(dataset, *cols): 

""" 

Converts vector columns in an input DataFrame from the 

:py:class:`pyspark.mllib.linalg.Vector` type to the new 

:py:class:`pyspark.ml.linalg.Vector` type under the `spark.ml` 

package. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

input dataset 

\\*cols : str 

Vector columns to be converted. 

 

New vector columns will be ignored. If unspecified, all old 

vector columns will be converted excepted nested ones. 

 

Returns 

------- 

:py:class:`pyspark.sql.DataFrame` 

the input dataset with old vector columns converted to the 

new vector type 

 

Examples 

-------- 

>>> import pyspark 

>>> from pyspark.mllib.linalg import Vectors 

>>> from pyspark.mllib.util import MLUtils 

>>> df = spark.createDataFrame( 

... [(0, Vectors.sparse(2, [1], [1.0]), Vectors.dense(2.0, 3.0))], 

... ["id", "x", "y"]) 

>>> r1 = MLUtils.convertVectorColumnsToML(df).first() 

>>> isinstance(r1.x, pyspark.ml.linalg.SparseVector) 

True 

>>> isinstance(r1.y, pyspark.ml.linalg.DenseVector) 

True 

>>> r2 = MLUtils.convertVectorColumnsToML(df, "x").first() 

>>> isinstance(r2.x, pyspark.ml.linalg.SparseVector) 

True 

>>> isinstance(r2.y, pyspark.mllib.linalg.DenseVector) 

True 

""" 

270 ↛ 271line 270 didn't jump to line 271, because the condition on line 270 was never true if not isinstance(dataset, DataFrame): 

raise TypeError("Input dataset must be a DataFrame but got {}.".format(type(dataset))) 

return callMLlibFunc("convertVectorColumnsToML", dataset, list(cols)) 

 

@staticmethod 

def convertVectorColumnsFromML(dataset, *cols): 

""" 

Converts vector columns in an input DataFrame to the 

:py:class:`pyspark.mllib.linalg.Vector` type from the new 

:py:class:`pyspark.ml.linalg.Vector` type under the `spark.ml` 

package. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

input dataset 

\\*cols : str 

Vector columns to be converted. 

 

Old vector columns will be ignored. If unspecified, all new 

vector columns will be converted except nested ones. 

 

Returns 

------- 

:py:class:`pyspark.sql.DataFrame` 

the input dataset with new vector columns converted to the 

old vector type 

 

Examples 

-------- 

>>> import pyspark 

>>> from pyspark.ml.linalg import Vectors 

>>> from pyspark.mllib.util import MLUtils 

>>> df = spark.createDataFrame( 

... [(0, Vectors.sparse(2, [1], [1.0]), Vectors.dense(2.0, 3.0))], 

... ["id", "x", "y"]) 

>>> r1 = MLUtils.convertVectorColumnsFromML(df).first() 

>>> isinstance(r1.x, pyspark.mllib.linalg.SparseVector) 

True 

>>> isinstance(r1.y, pyspark.mllib.linalg.DenseVector) 

True 

>>> r2 = MLUtils.convertVectorColumnsFromML(df, "x").first() 

>>> isinstance(r2.x, pyspark.mllib.linalg.SparseVector) 

True 

>>> isinstance(r2.y, pyspark.ml.linalg.DenseVector) 

True 

""" 

319 ↛ 320line 319 didn't jump to line 320, because the condition on line 319 was never true if not isinstance(dataset, DataFrame): 

raise TypeError("Input dataset must be a DataFrame but got {}.".format(type(dataset))) 

return callMLlibFunc("convertVectorColumnsFromML", dataset, list(cols)) 

 

@staticmethod 

def convertMatrixColumnsToML(dataset, *cols): 

""" 

Converts matrix columns in an input DataFrame from the 

:py:class:`pyspark.mllib.linalg.Matrix` type to the new 

:py:class:`pyspark.ml.linalg.Matrix` type under the `spark.ml` 

package. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

input dataset 

\\*cols : str 

Matrix columns to be converted. 

 

New matrix columns will be ignored. If unspecified, all old 

matrix columns will be converted excepted nested ones. 

 

Returns 

------- 

:py:class:`pyspark.sql.DataFrame` 

the input dataset with old matrix columns converted to the 

new matrix type 

 

Examples 

-------- 

>>> import pyspark 

>>> from pyspark.mllib.linalg import Matrices 

>>> from pyspark.mllib.util import MLUtils 

>>> df = spark.createDataFrame( 

... [(0, Matrices.sparse(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4]), 

... Matrices.dense(2, 2, range(4)))], ["id", "x", "y"]) 

>>> r1 = MLUtils.convertMatrixColumnsToML(df).first() 

>>> isinstance(r1.x, pyspark.ml.linalg.SparseMatrix) 

True 

>>> isinstance(r1.y, pyspark.ml.linalg.DenseMatrix) 

True 

>>> r2 = MLUtils.convertMatrixColumnsToML(df, "x").first() 

>>> isinstance(r2.x, pyspark.ml.linalg.SparseMatrix) 

True 

>>> isinstance(r2.y, pyspark.mllib.linalg.DenseMatrix) 

True 

""" 

368 ↛ 369line 368 didn't jump to line 369, because the condition on line 368 was never true if not isinstance(dataset, DataFrame): 

raise TypeError("Input dataset must be a DataFrame but got {}.".format(type(dataset))) 

return callMLlibFunc("convertMatrixColumnsToML", dataset, list(cols)) 

 

@staticmethod 

def convertMatrixColumnsFromML(dataset, *cols): 

""" 

Converts matrix columns in an input DataFrame to the 

:py:class:`pyspark.mllib.linalg.Matrix` type from the new 

:py:class:`pyspark.ml.linalg.Matrix` type under the `spark.ml` 

package. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

input dataset 

\\*cols : str 

Matrix columns to be converted. 

 

Old matrix columns will be ignored. If unspecified, all new 

matrix columns will be converted except nested ones. 

 

Returns 

------- 

:py:class:`pyspark.sql.DataFrame` 

the input dataset with new matrix columns converted to the 

old matrix type 

 

Examples 

-------- 

>>> import pyspark 

>>> from pyspark.ml.linalg import Matrices 

>>> from pyspark.mllib.util import MLUtils 

>>> df = spark.createDataFrame( 

... [(0, Matrices.sparse(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4]), 

... Matrices.dense(2, 2, range(4)))], ["id", "x", "y"]) 

>>> r1 = MLUtils.convertMatrixColumnsFromML(df).first() 

>>> isinstance(r1.x, pyspark.mllib.linalg.SparseMatrix) 

True 

>>> isinstance(r1.y, pyspark.mllib.linalg.DenseMatrix) 

True 

>>> r2 = MLUtils.convertMatrixColumnsFromML(df, "x").first() 

>>> isinstance(r2.x, pyspark.mllib.linalg.SparseMatrix) 

True 

>>> isinstance(r2.y, pyspark.ml.linalg.DenseMatrix) 

True 

""" 

417 ↛ 418line 417 didn't jump to line 418, because the condition on line 417 was never true if not isinstance(dataset, DataFrame): 

raise TypeError("Input dataset must be a DataFrame but got {}.".format(type(dataset))) 

return callMLlibFunc("convertMatrixColumnsFromML", dataset, list(cols)) 

 

 

class Saveable(object): 

""" 

Mixin for models and transformers which may be saved as files. 

 

.. versionadded:: 1.3.0 

""" 

 

def save(self, sc, path): 

""" 

Save this model to the given path. 

 

This saves: 

* human-readable (JSON) model metadata to path/metadata/ 

* Parquet formatted data to path/data/ 

 

The model may be loaded using :py:meth:`Loader.load`. 

 

Parameters 

---------- 

sc : :py:class:`pyspark.SparkContext` 

Spark context used to save model data. 

path : str 

Path specifying the directory in which to save 

this model. If the directory already exists, 

this method throws an exception. 

""" 

raise NotImplementedError 

 

 

@inherit_doc 

class JavaSaveable(Saveable): 

""" 

Mixin for models that provide save() through their Scala 

implementation. 

 

.. versionadded:: 1.3.0 

""" 

 

@since("1.3.0") 

def save(self, sc, path): 

"""Save this model to the given path.""" 

463 ↛ 464line 463 didn't jump to line 464, because the condition on line 463 was never true if not isinstance(sc, SparkContext): 

raise TypeError("sc should be a SparkContext, got type %s" % type(sc)) 

465 ↛ 466line 465 didn't jump to line 466, because the condition on line 465 was never true if not isinstance(path, str): 

raise TypeError("path should be a string, got type %s" % type(path)) 

self._java_model.save(sc._jsc.sc(), path) 

 

 

class Loader(object): 

""" 

Mixin for classes which can load saved models from files. 

 

.. versionadded:: 1.3.0 

""" 

 

@classmethod 

def load(cls, sc, path): 

""" 

Load a model from the given path. The model should have been 

saved using :py:meth:`Saveable.save`. 

 

Parameters 

---------- 

sc : :py:class:`pyspark.SparkContext` 

Spark context used for loading model files. 

path : str 

Path specifying the directory to which the model was saved. 

 

Returns 

------- 

object 

model instance 

""" 

raise NotImplementedError 

 

 

@inherit_doc 

class JavaLoader(Loader): 

""" 

Mixin for classes which can load saved models using its Scala 

implementation. 

 

.. versionadded:: 1.3.0 

""" 

 

@classmethod 

def _java_loader_class(cls): 

""" 

Returns the full class name of the Java loader. The default 

implementation replaces "pyspark" by "org.apache.spark" in 

the Python full class name. 

""" 

java_package = cls.__module__.replace("pyspark", "org.apache.spark") 

return ".".join([java_package, cls.__name__]) 

 

@classmethod 

def _load_java(cls, sc, path): 

""" 

Load a Java model from the given path. 

""" 

java_class = cls._java_loader_class() 

java_obj = sc._jvm 

for name in java_class.split("."): 

java_obj = getattr(java_obj, name) 

return java_obj.load(sc._jsc.sc(), path) 

 

@classmethod 

@since("1.3.0") 

def load(cls, sc, path): 

"""Load a model from the given path.""" 

java_model = cls._load_java(sc, path) 

return cls(java_model) 

 

 

class LinearDataGenerator(object): 

"""Utils for generating linear data. 

 

.. versionadded:: 1.5.0 

""" 

 

@staticmethod 

def generateLinearInput(intercept, weights, xMean, xVariance, 

nPoints, seed, eps): 

""" 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

intercept : float 

bias factor, the term c in X'w + c 

weights : :py:class:`pyspark.mllib.linalg.Vector` or convertible 

feature vector, the term w in X'w + c 

xMean : :py:class:`pyspark.mllib.linalg.Vector` or convertible 

Point around which the data X is centered. 

xVariance : :py:class:`pyspark.mllib.linalg.Vector` or convertible 

Variance of the given data 

nPoints : int 

Number of points to be generated 

seed : int 

Random Seed 

eps : float 

Used to scale the noise. If eps is set high, 

the amount of gaussian noise added is more. 

 

Returns 

------- 

list 

of :py:class:`pyspark.mllib.regression.LabeledPoints` of length nPoints 

""" 

weights = [float(weight) for weight in weights] 

xMean = [float(mean) for mean in xMean] 

xVariance = [float(var) for var in xVariance] 

return list(callMLlibFunc( 

"generateLinearInputWrapper", float(intercept), weights, xMean, 

xVariance, int(nPoints), int(seed), float(eps))) 

 

@staticmethod 

@since("1.5.0") 

def generateLinearRDD(sc, nexamples, nfeatures, eps, 

nParts=2, intercept=0.0): 

""" 

Generate an RDD of LabeledPoints. 

""" 

return callMLlibFunc( 

"generateLinearRDDWrapper", sc, int(nexamples), int(nfeatures), 

float(eps), int(nParts), float(intercept)) 

 

 

def _test(): 

import doctest 

from pyspark.sql import SparkSession 

globs = globals().copy() 

# The small batch size here ensures that we see multiple batches, 

# even in these small test examples: 

spark = SparkSession.builder\ 

.master("local[2]")\ 

.appName("mllib.util tests")\ 

.getOrCreate() 

globs['spark'] = spark 

globs['sc'] = spark.sparkContext 

(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

spark.stop() 

604 ↛ 605line 604 didn't jump to line 605, because the condition on line 604 was never true if failure_count: 

sys.exit(-1) 

 

 

if __name__ == "__main__": 

_test()