Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import os 

import tempfile 

import unittest 

 

from pyspark.mllib.common import _to_java_object_rdd # type: ignore[attr-defined] 

from pyspark.mllib.util import LinearDataGenerator 

from pyspark.mllib.util import MLUtils 

from pyspark.mllib.linalg import SparseVector, DenseVector, Vectors 

from pyspark.mllib.random import RandomRDDs 

from pyspark.testing.mllibutils import MLlibTestCase 

 

 

class MLUtilsTests(MLlibTestCase): 

def test_append_bias(self): 

data = [2.0, 2.0, 2.0] 

ret = MLUtils.appendBias(data) 

self.assertEqual(ret[3], 1.0) 

self.assertEqual(type(ret), DenseVector) 

 

def test_append_bias_with_vector(self): 

data = Vectors.dense([2.0, 2.0, 2.0]) 

ret = MLUtils.appendBias(data) 

self.assertEqual(ret[3], 1.0) 

self.assertEqual(type(ret), DenseVector) 

 

def test_append_bias_with_sp_vector(self): 

data = Vectors.sparse(3, {0: 2.0, 2: 2.0}) 

expected = Vectors.sparse(4, {0: 2.0, 2: 2.0, 3: 1.0}) 

# Returned value must be SparseVector 

ret = MLUtils.appendBias(data) 

self.assertEqual(ret, expected) 

self.assertEqual(type(ret), SparseVector) 

 

def test_load_vectors(self): 

import shutil 

data = [ 

[1.0, 2.0, 3.0], 

[1.0, 2.0, 3.0] 

] 

temp_dir = tempfile.mkdtemp() 

load_vectors_path = os.path.join(temp_dir, "test_load_vectors") 

try: 

self.sc.parallelize(data).saveAsTextFile(load_vectors_path) 

ret_rdd = MLUtils.loadVectors(self.sc, load_vectors_path) 

ret = ret_rdd.collect() 

self.assertEqual(len(ret), 2) 

self.assertEqual(ret[0], DenseVector([1.0, 2.0, 3.0])) 

self.assertEqual(ret[1], DenseVector([1.0, 2.0, 3.0])) 

except: 

self.fail() 

finally: 

shutil.rmtree(load_vectors_path) 

 

 

class LinearDataGeneratorTests(MLlibTestCase): 

def test_dim(self): 

linear_data = LinearDataGenerator.generateLinearInput( 

intercept=0.0, weights=[0.0, 0.0, 0.0], 

xMean=[0.0, 0.0, 0.0], xVariance=[0.33, 0.33, 0.33], 

nPoints=4, seed=0, eps=0.1) 

self.assertEqual(len(linear_data), 4) 

for point in linear_data: 

self.assertEqual(len(point.features), 3) 

 

linear_data = LinearDataGenerator.generateLinearRDD( 

sc=self.sc, nexamples=6, nfeatures=2, eps=0.1, 

nParts=2, intercept=0.0).collect() 

self.assertEqual(len(linear_data), 6) 

for point in linear_data: 

self.assertEqual(len(point.features), 2) 

 

 

class SerDeTest(MLlibTestCase): 

def test_to_java_object_rdd(self): # SPARK-6660 

data = RandomRDDs.uniformRDD(self.sc, 10, 5, seed=0) 

self.assertEqual(_to_java_object_rdd(data).count(), 10) 

 

 

if __name__ == "__main__": 

from pyspark.mllib.tests.test_util import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)