Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import array as pyarray 

import unittest 

 

from numpy import array 

 

from pyspark.mllib.linalg import Vectors, Matrices 

from pyspark.mllib.random import RandomRDDs 

from pyspark.mllib.regression import LabeledPoint 

from pyspark.mllib.stat import Statistics 

from pyspark.sql.utils import IllegalArgumentException 

from pyspark.testing.mllibutils import MLlibTestCase 

 

 

class StatTests(MLlibTestCase): 

# SPARK-4023 

def test_col_with_different_rdds(self): 

# numpy 

data = RandomRDDs.normalVectorRDD(self.sc, 1000, 10, 10) 

summary = Statistics.colStats(data) 

self.assertEqual(1000, summary.count()) 

# array 

data = self.sc.parallelize([range(10)] * 10) 

summary = Statistics.colStats(data) 

self.assertEqual(10, summary.count()) 

# array 

data = self.sc.parallelize([pyarray.array("d", range(10))] * 10) 

summary = Statistics.colStats(data) 

self.assertEqual(10, summary.count()) 

 

def test_col_norms(self): 

data = RandomRDDs.normalVectorRDD(self.sc, 1000, 10, 10) 

summary = Statistics.colStats(data) 

self.assertEqual(10, len(summary.normL1())) 

self.assertEqual(10, len(summary.normL2())) 

 

data2 = self.sc.parallelize(range(10)).map(lambda x: Vectors.dense(x)) 

summary2 = Statistics.colStats(data2) 

self.assertEqual(array([45.0]), summary2.normL1()) 

import math 

expectedNormL2 = math.sqrt(sum(map(lambda x: x*x, range(10)))) 

self.assertTrue(math.fabs(summary2.normL2()[0] - expectedNormL2) < 1e-14) 

 

 

class ChiSqTestTests(MLlibTestCase): 

def test_goodness_of_fit(self): 

from numpy import inf 

 

observed = Vectors.dense([4, 6, 5]) 

pearson = Statistics.chiSqTest(observed) 

 

# Validated against the R command `chisq.test(c(4, 6, 5), p=c(1/3, 1/3, 1/3))` 

self.assertEqual(pearson.statistic, 0.4) 

self.assertEqual(pearson.degreesOfFreedom, 2) 

self.assertAlmostEqual(pearson.pValue, 0.8187, 4) 

 

# Different expected and observed sum 

observed1 = Vectors.dense([21, 38, 43, 80]) 

expected1 = Vectors.dense([3, 5, 7, 20]) 

pearson1 = Statistics.chiSqTest(observed1, expected1) 

 

# Results validated against the R command 

# `chisq.test(c(21, 38, 43, 80), p=c(3/35, 1/7, 1/5, 4/7))` 

self.assertAlmostEqual(pearson1.statistic, 14.1429, 4) 

self.assertEqual(pearson1.degreesOfFreedom, 3) 

self.assertAlmostEqual(pearson1.pValue, 0.002717, 4) 

 

# Vectors with different sizes 

observed3 = Vectors.dense([1.0, 2.0, 3.0]) 

expected3 = Vectors.dense([1.0, 2.0, 3.0, 4.0]) 

self.assertRaises(ValueError, Statistics.chiSqTest, observed3, expected3) 

 

# Negative counts in observed 

neg_obs = Vectors.dense([1.0, 2.0, 3.0, -4.0]) 

self.assertRaises(IllegalArgumentException, Statistics.chiSqTest, neg_obs, expected1) 

 

# Count = 0.0 in expected but not observed 

zero_expected = Vectors.dense([1.0, 0.0, 3.0]) 

pearson_inf = Statistics.chiSqTest(observed, zero_expected) 

self.assertEqual(pearson_inf.statistic, inf) 

self.assertEqual(pearson_inf.degreesOfFreedom, 2) 

self.assertEqual(pearson_inf.pValue, 0.0) 

 

# 0.0 in expected and observed simultaneously 

zero_observed = Vectors.dense([2.0, 0.0, 1.0]) 

self.assertRaises( 

IllegalArgumentException, Statistics.chiSqTest, zero_observed, zero_expected) 

 

def test_matrix_independence(self): 

data = [40.0, 24.0, 29.0, 56.0, 32.0, 42.0, 31.0, 10.0, 0.0, 30.0, 15.0, 12.0] 

chi = Statistics.chiSqTest(Matrices.dense(3, 4, data)) 

 

# Results validated against R command 

# `chisq.test(rbind(c(40, 56, 31, 30),c(24, 32, 10, 15), c(29, 42, 0, 12)))` 

self.assertAlmostEqual(chi.statistic, 21.9958, 4) 

self.assertEqual(chi.degreesOfFreedom, 6) 

self.assertAlmostEqual(chi.pValue, 0.001213, 4) 

 

# Negative counts 

neg_counts = Matrices.dense(2, 2, [4.0, 5.0, 3.0, -3.0]) 

self.assertRaises(IllegalArgumentException, Statistics.chiSqTest, neg_counts) 

 

# Row sum = 0.0 

row_zero = Matrices.dense(2, 2, [0.0, 1.0, 0.0, 2.0]) 

self.assertRaises(IllegalArgumentException, Statistics.chiSqTest, row_zero) 

 

# Column sum = 0.0 

col_zero = Matrices.dense(2, 2, [0.0, 0.0, 2.0, 2.0]) 

self.assertRaises(IllegalArgumentException, Statistics.chiSqTest, col_zero) 

 

def test_chi_sq_pearson(self): 

data = [ 

LabeledPoint(0.0, Vectors.dense([0.5, 10.0])), 

LabeledPoint(0.0, Vectors.dense([1.5, 20.0])), 

LabeledPoint(1.0, Vectors.dense([1.5, 30.0])), 

LabeledPoint(0.0, Vectors.dense([3.5, 30.0])), 

LabeledPoint(0.0, Vectors.dense([3.5, 40.0])), 

LabeledPoint(1.0, Vectors.dense([3.5, 40.0])) 

] 

 

for numParts in [2, 4, 6, 8]: 

chi = Statistics.chiSqTest(self.sc.parallelize(data, numParts)) 

feature1 = chi[0] 

self.assertEqual(feature1.statistic, 0.75) 

self.assertEqual(feature1.degreesOfFreedom, 2) 

self.assertAlmostEqual(feature1.pValue, 0.6873, 4) 

 

feature2 = chi[1] 

self.assertEqual(feature2.statistic, 1.5) 

self.assertEqual(feature2.degreesOfFreedom, 3) 

self.assertAlmostEqual(feature2.pValue, 0.6823, 4) 

 

def test_right_number_of_results(self): 

num_cols = 1001 

sparse_data = [ 

LabeledPoint(0.0, Vectors.sparse(num_cols, [(100, 2.0)])), 

LabeledPoint(0.1, Vectors.sparse(num_cols, [(200, 1.0)])) 

] 

chi = Statistics.chiSqTest(self.sc.parallelize(sparse_data)) 

self.assertEqual(len(chi), num_cols) 

self.assertIsNotNone(chi[1000]) 

 

 

class KolmogorovSmirnovTest(MLlibTestCase): 

 

def test_R_implementation_equivalence(self): 

data = self.sc.parallelize([ 

1.1626852897838, -0.585924465893051, 1.78546500331661, -1.33259371048501, 

-0.446566766553219, 0.569606122374976, -2.88971761441412, -0.869018343326555, 

-0.461702683149641, -0.555540910137444, -0.0201353678515895, -0.150382224136063, 

-0.628126755843964, 1.32322085193283, -1.52135057001199, -0.437427868856691, 

0.970577579543399, 0.0282226444247749, -0.0857821886527593, 0.389214404984942 

]) 

model = Statistics.kolmogorovSmirnovTest(data, "norm") 

self.assertAlmostEqual(model.statistic, 0.189, 3) 

self.assertAlmostEqual(model.pValue, 0.422, 3) 

 

model = Statistics.kolmogorovSmirnovTest(data, "norm", 0, 1) 

self.assertAlmostEqual(model.statistic, 0.189, 3) 

self.assertAlmostEqual(model.pValue, 0.422, 3) 

 

 

if __name__ == "__main__": 

from pyspark.mllib.tests.test_stat import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)