Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import sys 

import warnings 

 

import numpy as np 

 

from pyspark import RDD, since 

from pyspark.streaming.dstream import DStream 

from pyspark.mllib.common import callMLlibFunc, _py2java, _java2py, inherit_doc 

from pyspark.mllib.linalg import _convert_to_vector 

from pyspark.mllib.util import Saveable, Loader 

 

__all__ = ['LabeledPoint', 'LinearModel', 

'LinearRegressionModel', 'LinearRegressionWithSGD', 

'RidgeRegressionModel', 'RidgeRegressionWithSGD', 

'LassoModel', 'LassoWithSGD', 'IsotonicRegressionModel', 

'IsotonicRegression', 'StreamingLinearAlgorithm', 

'StreamingLinearRegressionWithSGD'] 

 

 

class LabeledPoint(object): 

 

""" 

Class that represents the features and labels of a data point. 

 

.. versionadded:: 1.0.0 

 

Parameters 

---------- 

label : int 

Label for this data point. 

features : :py:class:`pyspark.mllib.linalg.Vector` or convertible 

Vector of features for this point (NumPy array, list, 

pyspark.mllib.linalg.SparseVector, or scipy.sparse column matrix). 

 

Notes 

----- 

'label' and 'features' are accessible as class attributes. 

""" 

 

def __init__(self, label, features): 

self.label = float(label) 

self.features = _convert_to_vector(features) 

 

def __reduce__(self): 

return (LabeledPoint, (self.label, self.features)) 

 

def __str__(self): 

return "(" + ",".join((str(self.label), str(self.features))) + ")" 

 

def __repr__(self): 

return "LabeledPoint(%s, %s)" % (self.label, self.features) 

 

 

class LinearModel(object): 

 

""" 

A linear model that has a vector of coefficients and an intercept. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

weights : :py:class:`pyspark.mllib.linalg.Vector` 

Weights computed for every feature. 

intercept : float 

Intercept computed for this model. 

""" 

 

def __init__(self, weights, intercept): 

self._coeff = _convert_to_vector(weights) 

self._intercept = float(intercept) 

 

@property 

@since("1.0.0") 

def weights(self): 

"""Weights computed for every feature.""" 

return self._coeff 

 

@property 

@since("1.0.0") 

def intercept(self): 

"""Intercept computed for this model.""" 

return self._intercept 

 

def __repr__(self): 

return "(weights=%s, intercept=%r)" % (self._coeff, self._intercept) 

 

 

@inherit_doc 

class LinearRegressionModelBase(LinearModel): 

 

"""A linear regression model. 

 

.. versionadded:: 0.9.0 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector 

>>> lrmb = LinearRegressionModelBase(np.array([1.0, 2.0]), 0.1) 

>>> abs(lrmb.predict(np.array([-1.03, 7.777])) - 14.624) < 1e-6 

True 

>>> abs(lrmb.predict(SparseVector(2, {0: -1.03, 1: 7.777})) - 14.624) < 1e-6 

True 

""" 

 

@since("0.9.0") 

def predict(self, x): 

""" 

Predict the value of the dependent variable given a vector or 

an RDD of vectors containing values for the independent variables. 

""" 

if isinstance(x, RDD): 

return x.map(self.predict) 

x = _convert_to_vector(x) 

return self.weights.dot(x) + self.intercept 

 

 

@inherit_doc 

class LinearRegressionModel(LinearRegressionModelBase): 

 

"""A linear regression model derived from a least-squares fit. 

 

.. versionadded:: 0.9.0 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector 

>>> from pyspark.mllib.regression import LabeledPoint 

>>> data = [ 

... LabeledPoint(0.0, [0.0]), 

... LabeledPoint(1.0, [1.0]), 

... LabeledPoint(3.0, [2.0]), 

... LabeledPoint(2.0, [3.0]) 

... ] 

>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, 

... initialWeights=np.array([1.0])) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5 

True 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> lrm.save(sc, path) 

>>> sameModel = LinearRegressionModel.load(sc, path) 

>>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5 

True 

>>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except: 

... pass 

>>> data = [ 

... LabeledPoint(0.0, SparseVector(1, {0: 0.0})), 

... LabeledPoint(1.0, SparseVector(1, {0: 1.0})), 

... LabeledPoint(3.0, SparseVector(1, {0: 2.0})), 

... LabeledPoint(2.0, SparseVector(1, {0: 3.0})) 

... ] 

>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, 

... initialWeights=np.array([1.0])) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0, 

... miniBatchFraction=1.0, initialWeights=np.array([1.0]), regParam=0.1, regType="l2", 

... intercept=True, validateData=True) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

""" 

@since("1.4.0") 

def save(self, sc, path): 

"""Save a LinearRegressionModel.""" 

java_model = sc._jvm.org.apache.spark.mllib.regression.LinearRegressionModel( 

_py2java(sc, self._coeff), self.intercept) 

java_model.save(sc._jsc.sc(), path) 

 

@classmethod 

@since("1.4.0") 

def load(cls, sc, path): 

"""Load a LinearRegressionModel.""" 

java_model = sc._jvm.org.apache.spark.mllib.regression.LinearRegressionModel.load( 

sc._jsc.sc(), path) 

weights = _java2py(sc, java_model.weights()) 

intercept = java_model.intercept() 

model = LinearRegressionModel(weights, intercept) 

return model 

 

 

# train_func should take two parameters, namely data and initial_weights, and 

# return the result of a call to the appropriate JVM stub. 

# _regression_train_wrapper is responsible for setup and error checking. 

def _regression_train_wrapper(train_func, modelClass, data, initial_weights): 

from pyspark.mllib.classification import LogisticRegressionModel 

first = data.first() 

222 ↛ 223line 222 didn't jump to line 223, because the condition on line 222 was never true if not isinstance(first, LabeledPoint): 

raise TypeError("data should be an RDD of LabeledPoint, but got %s" % type(first)) 

if initial_weights is None: 

initial_weights = [0.0] * len(data.first().features) 

if (modelClass == LogisticRegressionModel): 

weights, intercept, numFeatures, numClasses = train_func( 

data, _convert_to_vector(initial_weights)) 

return modelClass(weights, intercept, numFeatures, numClasses) 

else: 

weights, intercept = train_func(data, _convert_to_vector(initial_weights)) 

return modelClass(weights, intercept) 

 

 

class LinearRegressionWithSGD(object): 

""" 

Train a linear regression model with no regularization using Stochastic Gradient Descent. 

 

.. versionadded:: 0.9.0 

.. deprecated:: 2.0.0 

Use :py:class:`pyspark.ml.regression.LinearRegression`. 

""" 

@classmethod 

def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0, 

initialWeights=None, regParam=0.0, regType=None, intercept=False, 

validateData=True, convergenceTol=0.001): 

""" 

Train a linear regression model using Stochastic Gradient 

Descent (SGD). This solves the least squares regression 

formulation 

 

f(weights) = 1/(2n) ||A weights - y||^2 

 

which is the mean squared error. Here the data matrix has n rows, 

and the input RDD holds the set of rows of A, each with its 

corresponding right hand side label y. 

See also the documentation for the precise formulation. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

The training data, an RDD of LabeledPoint. 

iterations : int, optional 

The number of iterations. 

(default: 100) 

step : float, optional 

The step parameter used in SGD. 

(default: 1.0) 

miniBatchFraction : float, optional 

Fraction of data to be used for each SGD iteration. 

(default: 1.0) 

initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional 

The initial weights. 

(default: None) 

regParam : float, optional 

The regularizer parameter. 

(default: 0.0) 

regType : str, optional 

The type of regularizer used for training our model. 

Supported values: 

 

- "l1" for using L1 regularization 

- "l2" for using L2 regularization 

- None for no regularization (default) 

 

intercept : bool, optional 

Boolean parameter which indicates the use or not of the 

augmented representation for training data (i.e., whether bias 

features are activated or not). 

(default: False) 

validateData : bool, optional 

Boolean parameter which indicates if the algorithm should 

validate data before training. 

(default: True) 

convergenceTol : float, optional 

A condition which decides iteration termination. 

(default: 0.001) 

""" 

warnings.warn( 

"Deprecated in 2.0.0. Use ml.regression.LinearRegression.", FutureWarning) 

 

def train(rdd, i): 

return callMLlibFunc("trainLinearRegressionModelWithSGD", rdd, int(iterations), 

float(step), float(miniBatchFraction), i, float(regParam), 

regType, bool(intercept), bool(validateData), 

float(convergenceTol)) 

 

return _regression_train_wrapper(train, LinearRegressionModel, data, initialWeights) 

 

 

@inherit_doc 

class LassoModel(LinearRegressionModelBase): 

 

"""A linear regression model derived from a least-squares fit with 

an l_1 penalty term. 

 

.. versionadded:: 0.9.0 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector 

>>> from pyspark.mllib.regression import LabeledPoint 

>>> data = [ 

... LabeledPoint(0.0, [0.0]), 

... LabeledPoint(1.0, [1.0]), 

... LabeledPoint(3.0, [2.0]), 

... LabeledPoint(2.0, [3.0]) 

... ] 

>>> lrm = LassoWithSGD.train( 

... sc.parallelize(data), iterations=10, initialWeights=np.array([1.0])) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5 

True 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> lrm.save(sc, path) 

>>> sameModel = LassoModel.load(sc, path) 

>>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5 

True 

>>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except: 

... pass 

>>> data = [ 

... LabeledPoint(0.0, SparseVector(1, {0: 0.0})), 

... LabeledPoint(1.0, SparseVector(1, {0: 1.0})), 

... LabeledPoint(3.0, SparseVector(1, {0: 2.0})), 

... LabeledPoint(2.0, SparseVector(1, {0: 3.0})) 

... ] 

>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, 

... initialWeights=np.array([1.0])) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10, step=1.0, 

... regParam=0.01, miniBatchFraction=1.0, initialWeights=np.array([1.0]), intercept=True, 

... validateData=True) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

""" 

@since("1.4.0") 

def save(self, sc, path): 

"""Save a LassoModel.""" 

java_model = sc._jvm.org.apache.spark.mllib.regression.LassoModel( 

_py2java(sc, self._coeff), self.intercept) 

java_model.save(sc._jsc.sc(), path) 

 

@classmethod 

@since("1.4.0") 

def load(cls, sc, path): 

"""Load a LassoModel.""" 

java_model = sc._jvm.org.apache.spark.mllib.regression.LassoModel.load( 

sc._jsc.sc(), path) 

weights = _java2py(sc, java_model.weights()) 

intercept = java_model.intercept() 

model = LassoModel(weights, intercept) 

return model 

 

 

class LassoWithSGD(object): 

""" 

Train a regression model with L1-regularization using Stochastic Gradient Descent. 

 

.. versionadded:: 0.9.0 

.. deprecated:: 2.0.0 

Use :py:class:`pyspark.ml.regression.LinearRegression` with elasticNetParam = 1.0. 

Note the default regParam is 0.01 for LassoWithSGD, but is 0.0 for LinearRegression. 

""" 

@classmethod 

def train(cls, data, iterations=100, step=1.0, regParam=0.01, 

miniBatchFraction=1.0, initialWeights=None, intercept=False, 

validateData=True, convergenceTol=0.001): 

""" 

Train a regression model with L1-regularization using Stochastic 

Gradient Descent. This solves the l1-regularized least squares 

regression formulation 

 

f(weights) = 1/(2n) ||A weights - y||^2 + regParam ||weights||_1 

 

Here the data matrix has n rows, and the input RDD holds the set 

of rows of A, each with its corresponding right hand side label y. 

See also the documentation for the precise formulation. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

The training data, an RDD of LabeledPoint. 

iterations : int, optional 

The number of iterations. 

(default: 100) 

step : float, optional 

The step parameter used in SGD. 

(default: 1.0) 

regParam : float, optional 

The regularizer parameter. 

(default: 0.01) 

miniBatchFraction : float, optional 

Fraction of data to be used for each SGD iteration. 

(default: 1.0) 

initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional 

The initial weights. 

(default: None) 

intercept : bool, optional 

Boolean parameter which indicates the use or not of the 

augmented representation for training data (i.e. whether bias 

features are activated or not). 

(default: False) 

validateData : bool, optional 

Boolean parameter which indicates if the algorithm should 

validate data before training. 

(default: True) 

convergenceTol : float, optional 

A condition which decides iteration termination. 

(default: 0.001) 

""" 

warnings.warn( 

"Deprecated in 2.0.0. Use ml.regression.LinearRegression with elasticNetParam = 1.0. " 

"Note the default regParam is 0.01 for LassoWithSGD, but is 0.0 for LinearRegression.", 

FutureWarning 

) 

 

def train(rdd, i): 

return callMLlibFunc("trainLassoModelWithSGD", rdd, int(iterations), float(step), 

float(regParam), float(miniBatchFraction), i, bool(intercept), 

bool(validateData), float(convergenceTol)) 

 

return _regression_train_wrapper(train, LassoModel, data, initialWeights) 

 

 

@inherit_doc 

class RidgeRegressionModel(LinearRegressionModelBase): 

 

"""A linear regression model derived from a least-squares fit with 

an l_2 penalty term. 

 

.. versionadded:: 0.9.0 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector 

>>> from pyspark.mllib.regression import LabeledPoint 

>>> data = [ 

... LabeledPoint(0.0, [0.0]), 

... LabeledPoint(1.0, [1.0]), 

... LabeledPoint(3.0, [2.0]), 

... LabeledPoint(2.0, [3.0]) 

... ] 

>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10, 

... initialWeights=np.array([1.0])) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5 

True 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> lrm.save(sc, path) 

>>> sameModel = RidgeRegressionModel.load(sc, path) 

>>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5 

True 

>>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except: 

... pass 

>>> data = [ 

... LabeledPoint(0.0, SparseVector(1, {0: 0.0})), 

... LabeledPoint(1.0, SparseVector(1, {0: 1.0})), 

... LabeledPoint(3.0, SparseVector(1, {0: 2.0})), 

... LabeledPoint(2.0, SparseVector(1, {0: 3.0})) 

... ] 

>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, 

... initialWeights=np.array([1.0])) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0, 

... regParam=0.01, miniBatchFraction=1.0, initialWeights=np.array([1.0]), intercept=True, 

... validateData=True) 

>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5 

True 

>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5 

True 

""" 

@since("1.4.0") 

def save(self, sc, path): 

"""Save a RidgeRegressionMode.""" 

java_model = sc._jvm.org.apache.spark.mllib.regression.RidgeRegressionModel( 

_py2java(sc, self._coeff), self.intercept) 

java_model.save(sc._jsc.sc(), path) 

 

@classmethod 

@since("1.4.0") 

def load(cls, sc, path): 

"""Load a RidgeRegressionMode.""" 

java_model = sc._jvm.org.apache.spark.mllib.regression.RidgeRegressionModel.load( 

sc._jsc.sc(), path) 

weights = _java2py(sc, java_model.weights()) 

intercept = java_model.intercept() 

model = RidgeRegressionModel(weights, intercept) 

return model 

 

 

class RidgeRegressionWithSGD(object): 

""" 

Train a regression model with L2-regularization using Stochastic Gradient Descent. 

 

.. versionadded:: 0.9.0 

.. deprecated:: 2.0.0 

Use :py:class:`pyspark.ml.regression.LinearRegression` with elasticNetParam = 0.0. 

Note the default regParam is 0.01 for RidgeRegressionWithSGD, but is 0.0 for 

LinearRegression. 

""" 

@classmethod 

def train(cls, data, iterations=100, step=1.0, regParam=0.01, 

miniBatchFraction=1.0, initialWeights=None, intercept=False, 

validateData=True, convergenceTol=0.001): 

""" 

Train a regression model with L2-regularization using Stochastic 

Gradient Descent. This solves the l2-regularized least squares 

regression formulation 

 

f(weights) = 1/(2n) ||A weights - y||^2 + regParam/2 ||weights||^2 

 

Here the data matrix has n rows, and the input RDD holds the set 

of rows of A, each with its corresponding right hand side label y. 

See also the documentation for the precise formulation. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

The training data, an RDD of LabeledPoint. 

iterations : int, optional 

The number of iterations. 

(default: 100) 

step : float, optional 

The step parameter used in SGD. 

(default: 1.0) 

regParam : float, optional 

The regularizer parameter. 

(default: 0.01) 

miniBatchFraction : float, optional 

Fraction of data to be used for each SGD iteration. 

(default: 1.0) 

initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional 

The initial weights. 

(default: None) 

intercept : bool, optional 

Boolean parameter which indicates the use or not of the 

augmented representation for training data (i.e. whether bias 

features are activated or not). 

(default: False) 

validateData : bool, optional 

Boolean parameter which indicates if the algorithm should 

validate data before training. 

(default: True) 

convergenceTol : float, optional 

A condition which decides iteration termination. 

(default: 0.001) 

""" 

warnings.warn( 

"Deprecated in 2.0.0. Use ml.regression.LinearRegression with elasticNetParam = 0.0. " 

"Note the default regParam is 0.01 for RidgeRegressionWithSGD, but is 0.0 for " 

"LinearRegression.", FutureWarning) 

 

def train(rdd, i): 

return callMLlibFunc("trainRidgeModelWithSGD", rdd, int(iterations), float(step), 

float(regParam), float(miniBatchFraction), i, bool(intercept), 

bool(validateData), float(convergenceTol)) 

 

return _regression_train_wrapper(train, RidgeRegressionModel, data, initialWeights) 

 

 

class IsotonicRegressionModel(Saveable, Loader): 

 

""" 

Regression model for isotonic regression. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

boundaries : ndarray 

Array of boundaries for which predictions are known. Boundaries 

must be sorted in increasing order. 

predictions : ndarray 

Array of predictions associated to the boundaries at the same 

index. Results of isotonic regression and therefore monotone. 

isotonic : true 

Indicates whether this is isotonic or antitonic. 

 

Examples 

-------- 

>>> data = [(1, 0, 1), (2, 1, 1), (3, 2, 1), (1, 3, 1), (6, 4, 1), (17, 5, 1), (16, 6, 1)] 

>>> irm = IsotonicRegression.train(sc.parallelize(data)) 

>>> irm.predict(3) 

2.0 

>>> irm.predict(5) 

16.5 

>>> irm.predict(sc.parallelize([3, 5])).collect() 

[2.0, 16.5] 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> irm.save(sc, path) 

>>> sameModel = IsotonicRegressionModel.load(sc, path) 

>>> sameModel.predict(3) 

2.0 

>>> sameModel.predict(5) 

16.5 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except OSError: 

... pass 

""" 

 

def __init__(self, boundaries, predictions, isotonic): 

self.boundaries = boundaries 

self.predictions = predictions 

self.isotonic = isotonic 

 

def predict(self, x): 

""" 

Predict labels for provided features. 

Using a piecewise linear function. 

1) If x exactly matches a boundary then associated prediction 

is returned. In case there are multiple predictions with the 

same boundary then one of them is returned. Which one is 

undefined (same as java.util.Arrays.binarySearch). 

2) If x is lower or higher than all boundaries then first or 

last prediction is returned respectively. In case there are 

multiple predictions with the same boundary then the lowest 

or highest is returned respectively. 

3) If x falls between two values in boundary array then 

prediction is treated as piecewise linear function and 

interpolated value is returned. In case there are multiple 

values with the same boundary then the same rules as in 2) 

are used. 

 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

Feature or RDD of Features to be labeled. 

""" 

if isinstance(x, RDD): 

return x.map(lambda v: self.predict(v)) 

return np.interp(x, self.boundaries, self.predictions) 

 

@since("1.4.0") 

def save(self, sc, path): 

"""Save an IsotonicRegressionModel.""" 

java_boundaries = _py2java(sc, self.boundaries.tolist()) 

java_predictions = _py2java(sc, self.predictions.tolist()) 

java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel( 

java_boundaries, java_predictions, self.isotonic) 

java_model.save(sc._jsc.sc(), path) 

 

@classmethod 

@since("1.4.0") 

def load(cls, sc, path): 

"""Load an IsotonicRegressionModel.""" 

java_model = sc._jvm.org.apache.spark.mllib.regression.IsotonicRegressionModel.load( 

sc._jsc.sc(), path) 

py_boundaries = _java2py(sc, java_model.boundaryVector()).toArray() 

py_predictions = _java2py(sc, java_model.predictionVector()).toArray() 

return IsotonicRegressionModel(py_boundaries, py_predictions, java_model.isotonic) 

 

 

class IsotonicRegression(object): 

""" 

Isotonic regression. 

Currently implemented using parallelized pool adjacent violators 

algorithm. Only univariate (single feature) algorithm supported. 

 

.. versionadded:: 1.4.0 

 

Notes 

----- 

Sequential PAV implementation based on 

Tibshirani, Ryan J., Holger Hoefling, and Robert Tibshirani (2011) [1]_ 

 

Sequential PAV parallelization based on 

Kearsley, Anthony J., Richard A. Tapia, and Michael W. Trosset (1996) [2]_ 

 

See also 

`Isotonic regression (Wikipedia) <http://en.wikipedia.org/wiki/Isotonic_regression>`_. 

 

.. [1] Tibshirani, Ryan J., Holger Hoefling, and Robert Tibshirani. 

"Nearly-isotonic regression." Technometrics 53.1 (2011): 54-61. 

Available from http://www.stat.cmu.edu/~ryantibs/papers/neariso.pdf 

.. [2] Kearsley, Anthony J., Richard A. Tapia, and Michael W. Trosset 

"An approach to parallelizing isotonic regression." 

Applied Mathematics and Parallel Computing. Physica-Verlag HD, 1996. 141-147. 

Available from http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR96640.pdf 

""" 

 

@classmethod 

def train(cls, data, isotonic=True): 

""" 

Train an isotonic regression model on the given data. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

RDD of (label, feature, weight) tuples. 

isotonic : bool, optional 

Whether this is isotonic (which is default) or antitonic. 

(default: True) 

""" 

boundaries, predictions = callMLlibFunc("trainIsotonicRegressionModel", 

data.map(_convert_to_vector), bool(isotonic)) 

return IsotonicRegressionModel(boundaries.toArray(), predictions.toArray(), isotonic) 

 

 

class StreamingLinearAlgorithm(object): 

""" 

Base class that has to be inherited by any StreamingLinearAlgorithm. 

 

Prevents reimplementation of methods predictOn and predictOnValues. 

 

.. versionadded:: 1.5.0 

""" 

def __init__(self, model): 

self._model = model 

 

@since("1.5.0") 

def latestModel(self): 

""" 

Returns the latest model. 

""" 

return self._model 

 

def _validate(self, dstream): 

786 ↛ 787line 786 didn't jump to line 787, because the condition on line 786 was never true if not isinstance(dstream, DStream): 

raise TypeError( 

"dstream should be a DStream object, got %s" % type(dstream)) 

789 ↛ 790line 789 didn't jump to line 790, because the condition on line 789 was never true if not self._model: 

raise ValueError( 

"Model must be initialized using setInitialWeights") 

 

def predictOn(self, dstream): 

""" 

Use the model to make predictions on batches of data from a 

DStream. 

 

.. versionadded:: 1.5.0 

 

Returns 

------- 

:py:class:`pyspark.streaming.DStream` 

DStream containing predictions. 

""" 

self._validate(dstream) 

return dstream.map(lambda x: self._model.predict(x)) 

 

def predictOnValues(self, dstream): 

""" 

Use the model to make predictions on the values of a DStream and 

carry over its keys. 

 

.. versionadded:: 1.5.0 

 

Returns 

------- 

:py:class:`pyspark.streaming.DStream` 

DStream containing predictions. 

""" 

self._validate(dstream) 

return dstream.mapValues(lambda x: self._model.predict(x)) 

 

 

@inherit_doc 

class StreamingLinearRegressionWithSGD(StreamingLinearAlgorithm): 

""" 

Train or predict a linear regression model on streaming data. 

Training uses Stochastic Gradient Descent to update the model 

based on each new batch of incoming data from a DStream 

(see `LinearRegressionWithSGD` for model equation). 

 

Each batch of data is assumed to be an RDD of LabeledPoints. 

The number of data points per batch can vary, but the number 

of features must be constant. An initial weight vector must 

be provided. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

stepSize : float, optional 

Step size for each iteration of gradient descent. 

(default: 0.1) 

numIterations : int, optional 

Number of iterations run for each batch of data. 

(default: 50) 

miniBatchFraction : float, optional 

Fraction of each batch of data to use for updates. 

(default: 1.0) 

convergenceTol : float, optional 

Value used to determine when to terminate iterations. 

(default: 0.001) 

""" 

def __init__(self, stepSize=0.1, numIterations=50, miniBatchFraction=1.0, convergenceTol=0.001): 

self.stepSize = stepSize 

self.numIterations = numIterations 

self.miniBatchFraction = miniBatchFraction 

self.convergenceTol = convergenceTol 

self._model = None 

super(StreamingLinearRegressionWithSGD, self).__init__( 

model=self._model) 

 

@since("1.5.0") 

def setInitialWeights(self, initialWeights): 

""" 

Set the initial value of weights. 

 

This must be set before running trainOn and predictOn 

""" 

initialWeights = _convert_to_vector(initialWeights) 

self._model = LinearRegressionModel(initialWeights, 0) 

return self 

 

@since("1.5.0") 

def trainOn(self, dstream): 

"""Train the model on the incoming dstream.""" 

self._validate(dstream) 

 

def update(rdd): 

# LinearRegressionWithSGD.train raises an error for an empty RDD. 

if not rdd.isEmpty(): 

self._model = LinearRegressionWithSGD.train( 

rdd, self.numIterations, self.stepSize, 

self.miniBatchFraction, self._model.weights, 

intercept=self._model.intercept, convergenceTol=self.convergenceTol) 

 

dstream.foreachRDD(update) 

 

 

def _test(): 

import doctest 

from pyspark.sql import SparkSession 

import pyspark.mllib.regression 

globs = pyspark.mllib.regression.__dict__.copy() 

spark = SparkSession.builder\ 

.master("local[2]")\ 

.appName("mllib.regression tests")\ 

.getOrCreate() 

globs['sc'] = spark.sparkContext 

(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

spark.stop() 

902 ↛ 903line 902 didn't jump to line 903, because the condition on line 902 was never true if failure_count: 

sys.exit(-1) 

 

if __name__ == "__main__": 

_test()