Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import array 

import sys 

from collections import namedtuple 

 

from pyspark import SparkContext, since 

from pyspark.rdd import RDD 

from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, inherit_doc 

from pyspark.mllib.util import JavaLoader, JavaSaveable 

from pyspark.sql import DataFrame 

 

__all__ = ['MatrixFactorizationModel', 'ALS', 'Rating'] 

 

 

class Rating(namedtuple("Rating", ["user", "product", "rating"])): 

""" 

Represents a (user, product, rating) tuple. 

 

.. versionadded:: 1.2.0 

 

Examples 

-------- 

>>> r = Rating(1, 2, 5.0) 

>>> (r.user, r.product, r.rating) 

(1, 2, 5.0) 

>>> (r[0], r[1], r[2]) 

(1, 2, 5.0) 

""" 

 

def __reduce__(self): 

return Rating, (int(self.user), int(self.product), float(self.rating)) 

 

 

@inherit_doc 

class MatrixFactorizationModel(JavaModelWrapper, JavaSaveable, JavaLoader): 

 

"""A matrix factorisation model trained by regularized alternating 

least-squares. 

 

.. versionadded:: 0.9.0 

 

Examples 

-------- 

>>> r1 = (1, 1, 1.0) 

>>> r2 = (1, 2, 2.0) 

>>> r3 = (2, 1, 2.0) 

>>> ratings = sc.parallelize([r1, r2, r3]) 

>>> model = ALS.trainImplicit(ratings, 1, seed=10) 

>>> model.predict(2, 2) 

0.4... 

 

>>> testset = sc.parallelize([(1, 2), (1, 1)]) 

>>> model = ALS.train(ratings, 2, seed=0) 

>>> model.predictAll(testset).collect() 

[Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)] 

 

>>> model = ALS.train(ratings, 4, seed=10) 

>>> model.userFeatures().collect() 

[(1, array('d', [...])), (2, array('d', [...]))] 

 

>>> model.recommendUsers(1, 2) 

[Rating(user=2, product=1, rating=1.9...), Rating(user=1, product=1, rating=1.0...)] 

>>> model.recommendProducts(1, 2) 

[Rating(user=1, product=2, rating=1.9...), Rating(user=1, product=1, rating=1.0...)] 

>>> model.rank 

4 

 

>>> first_user = model.userFeatures().take(1)[0] 

>>> latents = first_user[1] 

>>> len(latents) 

4 

 

>>> model.productFeatures().collect() 

[(1, array('d', [...])), (2, array('d', [...]))] 

 

>>> first_product = model.productFeatures().take(1)[0] 

>>> latents = first_product[1] 

>>> len(latents) 

4 

 

>>> products_for_users = model.recommendProductsForUsers(1).collect() 

>>> len(products_for_users) 

2 

>>> products_for_users[0] 

(1, (Rating(user=1, product=2, rating=...),)) 

 

>>> users_for_products = model.recommendUsersForProducts(1).collect() 

>>> len(users_for_products) 

2 

>>> users_for_products[0] 

(1, (Rating(user=2, product=1, rating=...),)) 

 

>>> model = ALS.train(ratings, 1, nonnegative=True, seed=123456789) 

>>> model.predict(2, 2) 

3.73... 

 

>>> df = sqlContext.createDataFrame([Rating(1, 1, 1.0), Rating(1, 2, 2.0), Rating(2, 1, 2.0)]) 

>>> model = ALS.train(df, 1, nonnegative=True, seed=123456789) 

>>> model.predict(2, 2) 

3.73... 

 

>>> model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=123456789) 

>>> model.predict(2, 2) 

0.4... 

 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> model.save(sc, path) 

>>> sameModel = MatrixFactorizationModel.load(sc, path) 

>>> sameModel.predict(2, 2) 

0.4... 

>>> sameModel.predictAll(testset).collect() 

[Rating(... 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except OSError: 

... pass 

""" 

@since("0.9.0") 

def predict(self, user, product): 

""" 

Predicts rating for the given user and product. 

""" 

return self._java_model.predict(int(user), int(product)) 

 

@since("0.9.0") 

def predictAll(self, user_product): 

""" 

Returns a list of predicted ratings for input user and product 

pairs. 

""" 

assert isinstance(user_product, RDD), "user_product should be RDD of (user, product)" 

first = user_product.first() 

assert len(first) == 2, "user_product should be RDD of (user, product)" 

user_product = user_product.map(lambda u_p: (int(u_p[0]), int(u_p[1]))) 

return self.call("predict", user_product) 

 

@since("1.2.0") 

def userFeatures(self): 

""" 

Returns a paired RDD, where the first element is the user and the 

second is an array of features corresponding to that user. 

""" 

return self.call("getUserFeatures").mapValues(lambda v: array.array('d', v)) 

 

@since("1.2.0") 

def productFeatures(self): 

""" 

Returns a paired RDD, where the first element is the product and the 

second is an array of features corresponding to that product. 

""" 

return self.call("getProductFeatures").mapValues(lambda v: array.array('d', v)) 

 

@since("1.4.0") 

def recommendUsers(self, product, num): 

""" 

Recommends the top "num" number of users for a given product and 

returns a list of Rating objects sorted by the predicted rating in 

descending order. 

""" 

return list(self.call("recommendUsers", product, num)) 

 

@since("1.4.0") 

def recommendProducts(self, user, num): 

""" 

Recommends the top "num" number of products for a given user and 

returns a list of Rating objects sorted by the predicted rating in 

descending order. 

""" 

return list(self.call("recommendProducts", user, num)) 

 

def recommendProductsForUsers(self, num): 

""" 

Recommends the top "num" number of products for all users. The 

number of recommendations returned per user may be less than "num". 

""" 

return self.call("wrappedRecommendProductsForUsers", num) 

 

def recommendUsersForProducts(self, num): 

""" 

Recommends the top "num" number of users for all products. The 

number of recommendations returned per product may be less than 

"num". 

""" 

return self.call("wrappedRecommendUsersForProducts", num) 

 

@property 

@since("1.4.0") 

def rank(self): 

"""Rank for the features in this model""" 

return self.call("rank") 

 

@classmethod 

@since("1.3.1") 

def load(cls, sc, path): 

"""Load a model from the given path""" 

model = cls._load_java(sc, path) 

wrapper = sc._jvm.org.apache.spark.mllib.api.python.MatrixFactorizationModelWrapper(model) 

return MatrixFactorizationModel(wrapper) 

 

 

class ALS(object): 

"""Alternating Least Squares matrix factorization 

 

.. versionadded:: 0.9.0 

""" 

 

@classmethod 

def _prepare(cls, ratings): 

if isinstance(ratings, RDD): 

pass 

229 ↛ 232line 229 didn't jump to line 232, because the condition on line 229 was never false elif isinstance(ratings, DataFrame): 

ratings = ratings.rdd 

else: 

raise TypeError("Ratings should be represented by either an RDD or a DataFrame, " 

"but got %s." % type(ratings)) 

first = ratings.first() 

235 ↛ 236line 235 didn't jump to line 236, because the condition on line 235 was never true if isinstance(first, Rating): 

pass 

237 ↛ 240line 237 didn't jump to line 240, because the condition on line 237 was never false elif isinstance(first, (tuple, list)): 

ratings = ratings.map(lambda x: Rating(*x)) 

else: 

raise TypeError("Expect a Rating or a tuple/list, but got %s." % type(first)) 

return ratings 

 

@classmethod 

def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, nonnegative=False, 

seed=None): 

""" 

Train a matrix factorization model given an RDD of ratings by users 

for a subset of products. The ratings matrix is approximated as the 

product of two lower-rank matrices of a given rank (number of 

features). To solve for these features, ALS is run iteratively with 

a configurable level of parallelism. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

ratings : :py:class:`pyspark.RDD` 

RDD of `Rating` or (userID, productID, rating) tuple. 

rank : int 

Number of features to use (also referred to as the number of latent factors). 

iterations : int, optional 

Number of iterations of ALS. 

(default: 5) 

lambda\\_ : float, optional 

Regularization parameter. 

(default: 0.01) 

blocks : int, optional 

Number of blocks used to parallelize the computation. A value 

of -1 will use an auto-configured number of blocks. 

(default: -1) 

nonnegative : bool, optional 

A value of True will solve least-squares with nonnegativity 

constraints. 

(default: False) 

seed : bool, optional 

Random seed for initial matrix factorization model. A value 

of None will use system time as the seed. 

(default: None) 

""" 

model = callMLlibFunc("trainALSModel", cls._prepare(ratings), rank, iterations, 

lambda_, blocks, nonnegative, seed) 

return MatrixFactorizationModel(model) 

 

@classmethod 

def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01, 

nonnegative=False, seed=None): 

""" 

Train a matrix factorization model given an RDD of 'implicit 

preferences' of users for a subset of products. The ratings matrix 

is approximated as the product of two lower-rank matrices of a 

given rank (number of features). To solve for these features, ALS 

is run iteratively with a configurable level of parallelism. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

ratings : :py:class:`pyspark.RDD` 

RDD of `Rating` or (userID, productID, rating) tuple. 

rank : int 

Number of features to use (also referred to as the number of latent factors). 

iterations : int, optional 

Number of iterations of ALS. 

(default: 5) 

lambda\\_ : float, optional 

Regularization parameter. 

(default: 0.01) 

blocks : int, optional 

Number of blocks used to parallelize the computation. A value 

of -1 will use an auto-configured number of blocks. 

(default: -1) 

alpha : float, optional 

A constant used in computing confidence. 

(default: 0.01) 

nonnegative : bool, optional 

A value of True will solve least-squares with nonnegativity 

constraints. 

(default: False) 

seed : int, optional 

Random seed for initial matrix factorization model. A value 

of None will use system time as the seed. 

(default: None) 

""" 

model = callMLlibFunc("trainImplicitALSModel", cls._prepare(ratings), rank, 

iterations, lambda_, blocks, alpha, nonnegative, seed) 

return MatrixFactorizationModel(model) 

 

 

def _test(): 

import doctest 

import pyspark.mllib.recommendation 

from pyspark.sql import SQLContext 

globs = pyspark.mllib.recommendation.__dict__.copy() 

sc = SparkContext('local[4]', 'PythonTest') 

globs['sc'] = sc 

globs['sqlContext'] = SQLContext(sc) 

(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

globs['sc'].stop() 

339 ↛ 340line 339 didn't jump to line 340, because the condition on line 339 was never true if failure_count: 

sys.exit(-1) 

 

 

if __name__ == "__main__": 

_test()