Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

""" 

MLlib utilities for linear algebra. For dense vectors, MLlib 

uses the NumPy `array` type, so you can simply pass NumPy arrays 

around. For sparse vectors, users can construct a :class:`SparseVector` 

object from MLlib or pass SciPy `scipy.sparse` column vectors if 

SciPy is available in their environment. 

""" 

 

import sys 

import array 

import struct 

 

import numpy as np 

 

from pyspark import since 

from pyspark.ml import linalg as newlinalg 

from pyspark.sql.types import UserDefinedType, StructField, StructType, ArrayType, DoubleType, \ 

IntegerType, ByteType, BooleanType 

 

 

__all__ = ['Vector', 'DenseVector', 'SparseVector', 'Vectors', 

'Matrix', 'DenseMatrix', 'SparseMatrix', 'Matrices', 

'QRDecomposition'] 

 

 

# Check whether we have SciPy. MLlib works without it too, but if we have it, some methods, 

# such as _dot and _serialize_double_vector, start to support scipy.sparse matrices. 

 

try: 

import scipy.sparse 

_have_scipy = True 

except: 

# No SciPy in environment, but that's okay 

_have_scipy = False 

 

 

def _convert_to_vector(l): 

if isinstance(l, Vector): 

return l 

elif type(l) in (array.array, np.array, np.ndarray, list, tuple, range): 

return DenseVector(l) 

59 ↛ 67line 59 didn't jump to line 67, because the condition on line 59 was never false elif _have_scipy and scipy.sparse.issparse(l): 

assert l.shape[1] == 1, "Expected column vector" 

# Make sure the converted csc_matrix has sorted indices. 

csc = l.tocsc() 

if not csc.has_sorted_indices: 

csc.sort_indices() 

return SparseVector(l.shape[0], csc.indices, csc.data) 

else: 

raise TypeError("Cannot convert type %s into Vector" % type(l)) 

 

 

def _vector_size(v): 

""" 

Returns the size of the vector. 

 

Examples 

-------- 

>>> _vector_size([1., 2., 3.]) 

3 

>>> _vector_size((1., 2., 3.)) 

3 

>>> _vector_size(array.array('d', [1., 2., 3.])) 

3 

>>> _vector_size(np.zeros(3)) 

3 

>>> _vector_size(np.zeros((3, 1))) 

3 

>>> _vector_size(np.zeros((1, 3))) 

Traceback (most recent call last): 

... 

ValueError: Cannot treat an ndarray of shape (1, 3) as a vector 

""" 

if isinstance(v, Vector): 

return len(v) 

elif type(v) in (array.array, list, tuple, range): 

return len(v) 

elif type(v) == np.ndarray: 

if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1): 

return len(v) 

else: 

raise ValueError("Cannot treat an ndarray of shape %s as a vector" % str(v.shape)) 

100 ↛ 104line 100 didn't jump to line 104, because the condition on line 100 was never false elif _have_scipy and scipy.sparse.issparse(v): 

assert v.shape[1] == 1, "Expected column vector" 

return v.shape[0] 

else: 

raise TypeError("Cannot treat type %s as a vector" % type(v)) 

 

 

def _format_float(f, digits=4): 

s = str(round(f, digits)) 

109 ↛ 111line 109 didn't jump to line 111, because the condition on line 109 was never false if '.' in s: 

s = s[:s.index('.') + 1 + digits] 

return s 

 

 

def _format_float_list(l): 

return [_format_float(x) for x in l] 

 

 

def _double_to_long_bits(value): 

119 ↛ 120line 119 didn't jump to line 120, because the condition on line 119 was never true if np.isnan(value): 

value = float('nan') 

# pack double into 64 bits, then unpack as long int 

return struct.unpack('Q', struct.pack('d', value))[0] 

 

 

class VectorUDT(UserDefinedType): 

""" 

SQL user-defined type (UDT) for Vector. 

""" 

 

@classmethod 

def sqlType(cls): 

return StructType([ 

StructField("type", ByteType(), False), 

StructField("size", IntegerType(), True), 

StructField("indices", ArrayType(IntegerType(), False), True), 

StructField("values", ArrayType(DoubleType(), False), True)]) 

 

@classmethod 

def module(cls): 

return "pyspark.mllib.linalg" 

 

@classmethod 

def scalaUDT(cls): 

return "org.apache.spark.mllib.linalg.VectorUDT" 

 

def serialize(self, obj): 

if isinstance(obj, SparseVector): 

indices = [int(i) for i in obj.indices] 

values = [float(v) for v in obj.values] 

return (0, obj.size, indices, values) 

151 ↛ 155line 151 didn't jump to line 155, because the condition on line 151 was never false elif isinstance(obj, DenseVector): 

values = [float(v) for v in obj] 

return (1, None, None, values) 

else: 

raise TypeError("cannot serialize %r of type %r" % (obj, type(obj))) 

 

def deserialize(self, datum): 

assert len(datum) == 4, \ 

"VectorUDT.deserialize given row with length %d but requires 4" % len(datum) 

tpe = datum[0] 

if tpe == 0: 

return SparseVector(datum[1], datum[2], datum[3]) 

163 ↛ 166line 163 didn't jump to line 166, because the condition on line 163 was never false elif tpe == 1: 

return DenseVector(datum[3]) 

else: 

raise ValueError("do not recognize type %r" % tpe) 

 

def simpleString(self): 

return "vector" 

 

 

class MatrixUDT(UserDefinedType): 

""" 

SQL user-defined type (UDT) for Matrix. 

""" 

 

@classmethod 

def sqlType(cls): 

return StructType([ 

StructField("type", ByteType(), False), 

StructField("numRows", IntegerType(), False), 

StructField("numCols", IntegerType(), False), 

StructField("colPtrs", ArrayType(IntegerType(), False), True), 

StructField("rowIndices", ArrayType(IntegerType(), False), True), 

StructField("values", ArrayType(DoubleType(), False), True), 

StructField("isTransposed", BooleanType(), False)]) 

 

@classmethod 

def module(cls): 

return "pyspark.mllib.linalg" 

 

@classmethod 

def scalaUDT(cls): 

return "org.apache.spark.mllib.linalg.MatrixUDT" 

 

def serialize(self, obj): 

if isinstance(obj, SparseMatrix): 

colPtrs = [int(i) for i in obj.colPtrs] 

rowIndices = [int(i) for i in obj.rowIndices] 

values = [float(v) for v in obj.values] 

return (0, obj.numRows, obj.numCols, colPtrs, 

rowIndices, values, bool(obj.isTransposed)) 

203 ↛ 208line 203 didn't jump to line 208, because the condition on line 203 was never false elif isinstance(obj, DenseMatrix): 

values = [float(v) for v in obj.values] 

return (1, obj.numRows, obj.numCols, None, None, values, 

bool(obj.isTransposed)) 

else: 

raise TypeError("cannot serialize type %r" % (type(obj))) 

 

def deserialize(self, datum): 

assert len(datum) == 7, \ 

"MatrixUDT.deserialize given row with length %d but requires 7" % len(datum) 

tpe = datum[0] 

if tpe == 0: 

return SparseMatrix(*datum[1:]) 

216 ↛ 219line 216 didn't jump to line 219, because the condition on line 216 was never false elif tpe == 1: 

return DenseMatrix(datum[1], datum[2], datum[5], datum[6]) 

else: 

raise ValueError("do not recognize type %r" % tpe) 

 

def simpleString(self): 

return "matrix" 

 

 

class Vector(object): 

 

__UDT__ = VectorUDT() 

 

""" 

Abstract class for DenseVector and SparseVector 

""" 

def toArray(self): 

""" 

Convert the vector into an numpy.ndarray 

 

Returns 

------- 

:py:class:`numpy.ndarray` 

""" 

raise NotImplementedError 

 

def asML(self): 

""" 

Convert this vector to the new mllib-local representation. 

This does NOT copy the data; it copies references. 

 

Returns 

------- 

:py:class:`pyspark.ml.linalg.Vector` 

""" 

raise NotImplementedError 

 

 

class DenseVector(Vector): 

""" 

A dense vector represented by a value array. We use numpy array for 

storage and arithmetics will be delegated to the underlying numpy 

array. 

 

Examples 

-------- 

>>> v = Vectors.dense([1.0, 2.0]) 

>>> u = Vectors.dense([3.0, 4.0]) 

>>> v + u 

DenseVector([4.0, 6.0]) 

>>> 2 - v 

DenseVector([1.0, 0.0]) 

>>> v / 2 

DenseVector([0.5, 1.0]) 

>>> v * u 

DenseVector([3.0, 8.0]) 

>>> u / v 

DenseVector([3.0, 2.0]) 

>>> u % 2 

DenseVector([1.0, 0.0]) 

>>> -v 

DenseVector([-1.0, -2.0]) 

""" 

def __init__(self, ar): 

if isinstance(ar, bytes): 

ar = np.frombuffer(ar, dtype=np.float64) 

elif not isinstance(ar, np.ndarray): 

ar = np.array(ar, dtype=np.float64) 

if ar.dtype != np.float64: 

ar = ar.astype(np.float64) 

self.array = ar 

 

@staticmethod 

def parse(s): 

""" 

Parse string representation back into the DenseVector. 

 

Examples 

-------- 

>>> DenseVector.parse(' [ 0.0,1.0,2.0, 3.0]') 

DenseVector([0.0, 1.0, 2.0, 3.0]) 

""" 

start = s.find('[') 

299 ↛ 300line 299 didn't jump to line 300, because the condition on line 299 was never true if start == -1: 

raise ValueError("Array should start with '['.") 

end = s.find(']') 

302 ↛ 303line 302 didn't jump to line 303, because the condition on line 302 was never true if end == -1: 

raise ValueError("Array should end with ']'.") 

s = s[start + 1: end] 

 

try: 

values = [float(val) for val in s.split(',') if val] 

except ValueError: 

raise ValueError("Unable to parse values from %s" % s) 

return DenseVector(values) 

 

def __reduce__(self): 

return DenseVector, (self.array.tostring(),) 

 

def numNonzeros(self): 

""" 

Number of nonzero elements. This scans all active values and count non zeros 

""" 

return np.count_nonzero(self.array) 

 

def norm(self, p): 

""" 

Calculates the norm of a DenseVector. 

 

Examples 

-------- 

>>> a = DenseVector([0, -1, 2, -3]) 

>>> a.norm(2) 

3.7... 

>>> a.norm(1) 

6.0 

""" 

return np.linalg.norm(self.array, p) 

 

def dot(self, other): 

""" 

Compute the dot product of two Vectors. We support 

(Numpy array, list, SparseVector, or SciPy sparse) 

and a target NumPy array that is either 1- or 2-dimensional. 

Equivalent to calling numpy.dot of the two vectors. 

 

Examples 

-------- 

>>> dense = DenseVector(array.array('d', [1., 2.])) 

>>> dense.dot(dense) 

5.0 

>>> dense.dot(SparseVector(2, [0, 1], [2., 1.])) 

4.0 

>>> dense.dot(range(1, 3)) 

5.0 

>>> dense.dot(np.array(range(1, 3))) 

5.0 

>>> dense.dot([1.,]) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

>>> dense.dot(np.reshape([1., 2., 3., 4.], (2, 2), order='F')) 

array([ 5., 11.]) 

>>> dense.dot(np.reshape([1., 2., 3.], (3, 1), order='F')) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

""" 

if type(other) == np.ndarray: 

if other.ndim > 1: 

assert len(self) == other.shape[0], "dimension mismatch" 

return np.dot(self.array, other) 

elif _have_scipy and scipy.sparse.issparse(other): 

assert len(self) == other.shape[0], "dimension mismatch" 

return other.transpose().dot(self.toArray()) 

else: 

assert len(self) == _vector_size(other), "dimension mismatch" 

if isinstance(other, SparseVector): 

return other.dot(self) 

elif isinstance(other, Vector): 

return np.dot(self.toArray(), other.toArray()) 

else: 

return np.dot(self.toArray(), other) 

 

def squared_distance(self, other): 

""" 

Squared distance of two Vectors. 

 

Examples 

-------- 

>>> dense1 = DenseVector(array.array('d', [1., 2.])) 

>>> dense1.squared_distance(dense1) 

0.0 

>>> dense2 = np.array([2., 1.]) 

>>> dense1.squared_distance(dense2) 

2.0 

>>> dense3 = [2., 1.] 

>>> dense1.squared_distance(dense3) 

2.0 

>>> sparse1 = SparseVector(2, [0, 1], [2., 1.]) 

>>> dense1.squared_distance(sparse1) 

2.0 

>>> dense1.squared_distance([1.,]) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

>>> dense1.squared_distance(SparseVector(1, [0,], [1.,])) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

""" 

assert len(self) == _vector_size(other), "dimension mismatch" 

if isinstance(other, SparseVector): 

return other.squared_distance(self) 

elif _have_scipy and scipy.sparse.issparse(other): 

return _convert_to_vector(other).squared_distance(self) 

 

if isinstance(other, Vector): 

other = other.toArray() 

elif not isinstance(other, np.ndarray): 

other = np.array(other) 

diff = self.toArray() - other 

return np.dot(diff, diff) 

 

def toArray(self): 

""" 

Returns an numpy.ndarray 

""" 

return self.array 

 

def asML(self): 

""" 

Convert this vector to the new mllib-local representation. 

This does NOT copy the data; it copies references. 

 

.. versionadded:: 2.0.0 

 

Returns 

------- 

:py:class:`pyspark.ml.linalg.DenseVector` 

""" 

return newlinalg.DenseVector(self.array) 

 

@property 

def values(self): 

""" 

Returns a list of values 

""" 

return self.array 

 

def __getitem__(self, item): 

return self.array[item] 

 

def __len__(self): 

return len(self.array) 

 

def __str__(self): 

return "[" + ",".join([str(v) for v in self.array]) + "]" 

 

def __repr__(self): 

return "DenseVector([%s])" % (', '.join(_format_float(i) for i in self.array)) 

 

def __eq__(self, other): 

if isinstance(other, DenseVector): 

return np.array_equal(self.array, other.array) 

461 ↛ 465line 461 didn't jump to line 465, because the condition on line 461 was never false elif isinstance(other, SparseVector): 

462 ↛ 463line 462 didn't jump to line 463, because the condition on line 462 was never true if len(self) != other.size: 

return False 

return Vectors._equals(list(range(len(self))), self.array, other.indices, other.values) 

return False 

 

def __ne__(self, other): 

return not self == other 

 

def __hash__(self): 

size = len(self) 

result = 31 + size 

nnz = 0 

i = 0 

while i < size and nnz < 128: 

if self.array[i] != 0: 

result = 31 * result + i 

bits = _double_to_long_bits(self.array[i]) 

result = 31 * result + (bits ^ (bits >> 32)) 

nnz += 1 

i += 1 

return result 

 

def __getattr__(self, item): 

return getattr(self.array, item) 

 

def __neg__(self): 

return DenseVector(-self.array) 

 

def _delegate(op): 

def func(self, other): 

if isinstance(other, DenseVector): 

other = other.array 

return DenseVector(getattr(self.array, op)(other)) 

return func 

 

__add__ = _delegate("__add__") 

__sub__ = _delegate("__sub__") 

__mul__ = _delegate("__mul__") 

__div__ = _delegate("__div__") 

__truediv__ = _delegate("__truediv__") 

__mod__ = _delegate("__mod__") 

__radd__ = _delegate("__radd__") 

__rsub__ = _delegate("__rsub__") 

__rmul__ = _delegate("__rmul__") 

__rdiv__ = _delegate("__rdiv__") 

__rtruediv__ = _delegate("__rtruediv__") 

__rmod__ = _delegate("__rmod__") 

 

 

class SparseVector(Vector): 

""" 

A simple sparse vector class for passing data to MLlib. Users may 

alternatively pass SciPy's {scipy.sparse} data types. 

""" 

def __init__(self, size, *args): 

""" 

Create a sparse vector, using either a dictionary, a list of 

(index, value) pairs, or two separate arrays of indices and 

values (sorted by index). 

 

Parameters 

---------- 

size : int 

Size of the vector. 

args 

Active entries, as a dictionary {index: value, ...}, 

a list of tuples [(index, value), ...], or a list of strictly 

increasing indices and a list of corresponding values [index, ...], 

[value, ...]. Inactive entries are treated as zeros. 

 

Examples 

-------- 

>>> SparseVector(4, {1: 1.0, 3: 5.5}) 

SparseVector(4, {1: 1.0, 3: 5.5}) 

>>> SparseVector(4, [(1, 1.0), (3, 5.5)]) 

SparseVector(4, {1: 1.0, 3: 5.5}) 

>>> SparseVector(4, [1, 3], [1.0, 5.5]) 

SparseVector(4, {1: 1.0, 3: 5.5}) 

""" 

self.size = int(size) 

""" Size of the vector. """ 

assert 1 <= len(args) <= 2, "must pass either 2 or 3 arguments" 

if len(args) == 1: 

pairs = args[0] 

if type(pairs) == dict: 

pairs = pairs.items() 

pairs = sorted(pairs) 

self.indices = np.array([p[0] for p in pairs], dtype=np.int32) 

""" A list of indices corresponding to active entries. """ 

self.values = np.array([p[1] for p in pairs], dtype=np.float64) 

""" A list of values corresponding to active entries. """ 

else: 

if isinstance(args[0], bytes): 

assert isinstance(args[1], bytes), "values should be string too" 

if args[0]: 

self.indices = np.frombuffer(args[0], np.int32) 

self.values = np.frombuffer(args[1], np.float64) 

else: 

# np.frombuffer() doesn't work well with empty string in older version 

self.indices = np.array([], dtype=np.int32) 

self.values = np.array([], dtype=np.float64) 

else: 

self.indices = np.array(args[0], dtype=np.int32) 

self.values = np.array(args[1], dtype=np.float64) 

assert len(self.indices) == len(self.values), "index and value arrays not same length" 

for i in range(len(self.indices) - 1): 

568 ↛ 569line 568 didn't jump to line 569, because the condition on line 568 was never true if self.indices[i] >= self.indices[i + 1]: 

raise TypeError( 

"Indices %s and %s are not strictly increasing" 

% (self.indices[i], self.indices[i + 1])) 

 

def numNonzeros(self): 

""" 

Number of nonzero elements. This scans all active values and count non zeros. 

""" 

return np.count_nonzero(self.values) 

 

def norm(self, p): 

""" 

Calculates the norm of a SparseVector. 

 

Examples 

-------- 

>>> a = SparseVector(4, [0, 1], [3., -4.]) 

>>> a.norm(1) 

7.0 

>>> a.norm(2) 

5.0 

""" 

return np.linalg.norm(self.values, p) 

 

def __reduce__(self): 

return ( 

SparseVector, 

(self.size, self.indices.tostring(), self.values.tostring())) 

 

@staticmethod 

def parse(s): 

""" 

Parse string representation back into the SparseVector. 

 

Examples 

-------- 

>>> SparseVector.parse(' (4, [0,1 ],[ 4.0,5.0] )') 

SparseVector(4, {0: 4.0, 1: 5.0}) 

""" 

start = s.find('(') 

609 ↛ 610line 609 didn't jump to line 610, because the condition on line 609 was never true if start == -1: 

raise ValueError("Tuple should start with '('") 

end = s.find(')') 

612 ↛ 613line 612 didn't jump to line 613, because the condition on line 612 was never true if end == -1: 

raise ValueError("Tuple should end with ')'") 

s = s[start + 1: end].strip() 

 

size = s[: s.find(',')] 

try: 

size = int(size) 

except ValueError: 

raise ValueError("Cannot parse size %s." % size) 

 

ind_start = s.find('[') 

623 ↛ 624line 623 didn't jump to line 624, because the condition on line 623 was never true if ind_start == -1: 

raise ValueError("Indices array should start with '['.") 

ind_end = s.find(']') 

626 ↛ 627line 626 didn't jump to line 627, because the condition on line 626 was never true if ind_end == -1: 

raise ValueError("Indices array should end with ']'") 

new_s = s[ind_start + 1: ind_end] 

ind_list = new_s.split(',') 

try: 

indices = [int(ind) for ind in ind_list if ind] 

except ValueError: 

raise ValueError("Unable to parse indices from %s." % new_s) 

s = s[ind_end + 1:].strip() 

 

val_start = s.find('[') 

637 ↛ 638line 637 didn't jump to line 638, because the condition on line 637 was never true if val_start == -1: 

raise ValueError("Values array should start with '['.") 

val_end = s.find(']') 

640 ↛ 641line 640 didn't jump to line 641, because the condition on line 640 was never true if val_end == -1: 

raise ValueError("Values array should end with ']'.") 

val_list = s[val_start + 1: val_end].split(',') 

try: 

values = [float(val) for val in val_list if val] 

except ValueError: 

raise ValueError("Unable to parse values from %s." % s) 

return SparseVector(size, indices, values) 

 

def dot(self, other): 

""" 

Dot product with a SparseVector or 1- or 2-dimensional Numpy array. 

 

Examples 

-------- 

>>> a = SparseVector(4, [1, 3], [3.0, 4.0]) 

>>> a.dot(a) 

25.0 

>>> a.dot(array.array('d', [1., 2., 3., 4.])) 

22.0 

>>> b = SparseVector(4, [2], [1.0]) 

>>> a.dot(b) 

0.0 

>>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]])) 

array([ 22., 22.]) 

>>> a.dot([1., 2., 3.]) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

>>> a.dot(np.array([1., 2.])) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

>>> a.dot(DenseVector([1., 2.])) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

>>> a.dot(np.zeros((3, 2))) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

""" 

 

if isinstance(other, np.ndarray): 

684 ↛ 685line 684 didn't jump to line 685, because the condition on line 684 was never true if other.ndim not in [2, 1]: 

raise ValueError("Cannot call dot with %d-dimensional array" % other.ndim) 

assert len(self) == other.shape[0], "dimension mismatch" 

return np.dot(self.values, other[self.indices]) 

 

assert len(self) == _vector_size(other), "dimension mismatch" 

 

if isinstance(other, DenseVector): 

return np.dot(other.array[self.indices], self.values) 

 

elif isinstance(other, SparseVector): 

# Find out common indices. 

self_cmind = np.in1d(self.indices, other.indices, assume_unique=True) 

self_values = self.values[self_cmind] 

if self_values.size == 0: 

return 0.0 

else: 

other_cmind = np.in1d(other.indices, self.indices, assume_unique=True) 

return np.dot(self_values, other.values[other_cmind]) 

 

else: 

return self.dot(_convert_to_vector(other)) 

 

def squared_distance(self, other): 

""" 

Squared distance from a SparseVector or 1-dimensional NumPy array. 

 

Examples 

-------- 

>>> a = SparseVector(4, [1, 3], [3.0, 4.0]) 

>>> a.squared_distance(a) 

0.0 

>>> a.squared_distance(array.array('d', [1., 2., 3., 4.])) 

11.0 

>>> a.squared_distance(np.array([1., 2., 3., 4.])) 

11.0 

>>> b = SparseVector(4, [2], [1.0]) 

>>> a.squared_distance(b) 

26.0 

>>> b.squared_distance(a) 

26.0 

>>> b.squared_distance([1., 2.]) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

>>> b.squared_distance(SparseVector(3, [1,], [1.0,])) 

Traceback (most recent call last): 

... 

AssertionError: dimension mismatch 

""" 

assert len(self) == _vector_size(other), "dimension mismatch" 

 

if isinstance(other, np.ndarray) or isinstance(other, DenseVector): 

737 ↛ 738line 737 didn't jump to line 738, because the condition on line 737 was never true if isinstance(other, np.ndarray) and other.ndim != 1: 

raise ValueError("Cannot call squared_distance with %d-dimensional array" % 

other.ndim) 

if isinstance(other, DenseVector): 

other = other.array 

sparse_ind = np.zeros(other.size, dtype=bool) 

sparse_ind[self.indices] = True 

dist = other[sparse_ind] - self.values 

result = np.dot(dist, dist) 

 

other_ind = other[~sparse_ind] 

result += np.dot(other_ind, other_ind) 

return result 

 

elif isinstance(other, SparseVector): 

result = 0.0 

i, j = 0, 0 

while i < len(self.indices) and j < len(other.indices): 

if self.indices[i] == other.indices[j]: 

diff = self.values[i] - other.values[j] 

result += diff * diff 

i += 1 

j += 1 

elif self.indices[i] < other.indices[j]: 

result += self.values[i] * self.values[i] 

i += 1 

else: 

result += other.values[j] * other.values[j] 

j += 1 

while i < len(self.indices): 

result += self.values[i] * self.values[i] 

i += 1 

while j < len(other.indices): 

result += other.values[j] * other.values[j] 

j += 1 

return result 

else: 

return self.squared_distance(_convert_to_vector(other)) 

 

def toArray(self): 

""" 

Returns a copy of this SparseVector as a 1-dimensional NumPy array. 

""" 

arr = np.zeros((self.size,), dtype=np.float64) 

arr[self.indices] = self.values 

return arr 

 

def asML(self): 

""" 

Convert this vector to the new mllib-local representation. 

This does NOT copy the data; it copies references. 

 

.. versionadded:: 2.0.0 

 

Returns 

------- 

:py:class:`pyspark.ml.linalg.SparseVector` 

""" 

return newlinalg.SparseVector(self.size, self.indices, self.values) 

 

def __len__(self): 

return self.size 

 

def __str__(self): 

inds = "[" + ",".join([str(i) for i in self.indices]) + "]" 

vals = "[" + ",".join([str(v) for v in self.values]) + "]" 

return "(" + ",".join((str(self.size), inds, vals)) + ")" 

 

def __repr__(self): 

inds = self.indices 

vals = self.values 

entries = ", ".join(["{0}: {1}".format(inds[i], _format_float(vals[i])) 

for i in range(len(inds))]) 

return "SparseVector({0}, {{{1}}})".format(self.size, entries) 

 

def __eq__(self, other): 

813 ↛ 816line 813 didn't jump to line 816, because the condition on line 813 was never false if isinstance(other, SparseVector): 

return other.size == self.size and np.array_equal(other.indices, self.indices) \ 

and np.array_equal(other.values, self.values) 

elif isinstance(other, DenseVector): 

if self.size != len(other): 

return False 

return Vectors._equals(self.indices, self.values, list(range(len(other))), other.array) 

return False 

 

def __getitem__(self, index): 

inds = self.indices 

vals = self.values 

if not isinstance(index, int): 

raise TypeError( 

"Indices must be of type integer, got type %s" % type(index)) 

 

if index >= self.size or index < -self.size: 

raise IndexError("Index %d out of bounds." % index) 

if index < 0: 

index += self.size 

 

if (inds.size == 0) or (index > inds.item(-1)): 

return 0. 

 

insert_index = np.searchsorted(inds, index) 

row_ind = inds[insert_index] 

if row_ind == index: 

return vals[insert_index] 

return 0. 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

def __hash__(self): 

result = 31 + self.size 

nnz = 0 

i = 0 

while i < len(self.values) and nnz < 128: 

851 ↛ 856line 851 didn't jump to line 856, because the condition on line 851 was never false if self.values[i] != 0: 

result = 31 * result + int(self.indices[i]) 

bits = _double_to_long_bits(self.values[i]) 

result = 31 * result + (bits ^ (bits >> 32)) 

nnz += 1 

i += 1 

return result 

 

 

class Vectors(object): 

 

""" 

Factory methods for working with vectors. 

 

Notes 

----- 

Dense vectors are simply represented as NumPy array objects, 

so there is no need to covert them for use in MLlib. For sparse vectors, 

the factory methods in this class create an MLlib-compatible type, or users 

can pass in SciPy's `scipy.sparse` column vectors. 

""" 

 

@staticmethod 

def sparse(size, *args): 

""" 

Create a sparse vector, using either a dictionary, a list of 

(index, value) pairs, or two separate arrays of indices and 

values (sorted by index). 

 

Parameters 

---------- 

size : int 

Size of the vector. 

args 

Non-zero entries, as a dictionary, list of tuples, 

or two sorted lists containing indices and values. 

 

Examples 

-------- 

>>> Vectors.sparse(4, {1: 1.0, 3: 5.5}) 

SparseVector(4, {1: 1.0, 3: 5.5}) 

>>> Vectors.sparse(4, [(1, 1.0), (3, 5.5)]) 

SparseVector(4, {1: 1.0, 3: 5.5}) 

>>> Vectors.sparse(4, [1, 3], [1.0, 5.5]) 

SparseVector(4, {1: 1.0, 3: 5.5}) 

""" 

return SparseVector(size, *args) 

 

@staticmethod 

def dense(*elements): 

""" 

Create a dense vector of 64-bit floats from a Python list or numbers. 

 

Examples 

-------- 

>>> Vectors.dense([1, 2, 3]) 

DenseVector([1.0, 2.0, 3.0]) 

>>> Vectors.dense(1.0, 2.0) 

DenseVector([1.0, 2.0]) 

""" 

if len(elements) == 1 and not isinstance(elements[0], (float, int)): 

# it's list, numpy.array or other iterable object. 

elements = elements[0] 

return DenseVector(elements) 

 

@staticmethod 

def fromML(vec): 

""" 

Convert a vector from the new mllib-local representation. 

This does NOT copy the data; it copies references. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

vec : :py:class:`pyspark.ml.linalg.Vector` 

 

Returns 

------- 

:py:class:`pyspark.mllib.linalg.Vector` 

""" 

if isinstance(vec, newlinalg.DenseVector): 

return DenseVector(vec.array) 

934 ↛ 937line 934 didn't jump to line 937, because the condition on line 934 was never false elif isinstance(vec, newlinalg.SparseVector): 

return SparseVector(vec.size, vec.indices, vec.values) 

else: 

raise TypeError("Unsupported vector type %s" % type(vec)) 

 

@staticmethod 

def stringify(vector): 

""" 

Converts a vector into a string, which can be recognized by 

Vectors.parse(). 

 

Examples 

-------- 

>>> Vectors.stringify(Vectors.sparse(2, [1], [1.0])) 

'(2,[1],[1.0])' 

>>> Vectors.stringify(Vectors.dense([0.0, 1.0])) 

'[0.0,1.0]' 

""" 

return str(vector) 

 

@staticmethod 

def squared_distance(v1, v2): 

""" 

Squared distance between two vectors. 

a and b can be of type SparseVector, DenseVector, np.ndarray 

or array.array. 

 

Examples 

-------- 

>>> a = Vectors.sparse(4, [(0, 1), (3, 4)]) 

>>> b = Vectors.dense([2, 5, 4, 1]) 

>>> a.squared_distance(b) 

51.0 

""" 

v1, v2 = _convert_to_vector(v1), _convert_to_vector(v2) 

return v1.squared_distance(v2) 

 

@staticmethod 

def norm(vector, p): 

""" 

Find norm of the given vector. 

""" 

return _convert_to_vector(vector).norm(p) 

 

@staticmethod 

def parse(s): 

"""Parse a string representation back into the Vector. 

 

Examples 

-------- 

>>> Vectors.parse('[2,1,2 ]') 

DenseVector([2.0, 1.0, 2.0]) 

>>> Vectors.parse(' ( 100, [0], [2])') 

SparseVector(100, {0: 2.0}) 

""" 

if s.find('(') == -1 and s.find('[') != -1: 

return DenseVector.parse(s) 

991 ↛ 994line 991 didn't jump to line 994, because the condition on line 991 was never false elif s.find('(') != -1: 

return SparseVector.parse(s) 

else: 

raise ValueError( 

"Cannot find tokens '[' or '(' from the input string.") 

 

@staticmethod 

def zeros(size): 

return DenseVector(np.zeros(size)) 

 

@staticmethod 

def _equals(v1_indices, v1_values, v2_indices, v2_values): 

""" 

Check equality between sparse/dense vectors, 

v1_indices and v2_indices assume to be strictly increasing. 

""" 

v1_size = len(v1_values) 

v2_size = len(v2_values) 

k1 = 0 

k2 = 0 

all_equal = True 

while all_equal: 

while k1 < v1_size and v1_values[k1] == 0: 

k1 += 1 

while k2 < v2_size and v2_values[k2] == 0: 

k2 += 1 

 

if k1 >= v1_size or k2 >= v2_size: 

return k1 >= v1_size and k2 >= v2_size 

 

all_equal = v1_indices[k1] == v2_indices[k2] and v1_values[k1] == v2_values[k2] 

k1 += 1 

k2 += 1 

return all_equal 

 

 

class Matrix(object): 

 

__UDT__ = MatrixUDT() 

 

""" 

Represents a local matrix. 

""" 

def __init__(self, numRows, numCols, isTransposed=False): 

self.numRows = numRows 

self.numCols = numCols 

self.isTransposed = isTransposed 

 

def toArray(self): 

""" 

Returns its elements in a NumPy ndarray. 

""" 

raise NotImplementedError 

 

def asML(self): 

""" 

Convert this matrix to the new mllib-local representation. 

This does NOT copy the data; it copies references. 

""" 

raise NotImplementedError 

 

@staticmethod 

def _convert_to_array(array_like, dtype): 

""" 

Convert Matrix attributes which are array-like or buffer to array. 

""" 

if isinstance(array_like, bytes): 

return np.frombuffer(array_like, dtype=dtype) 

return np.asarray(array_like, dtype=dtype) 

 

 

class DenseMatrix(Matrix): 

""" 

Column-major dense matrix. 

""" 

def __init__(self, numRows, numCols, values, isTransposed=False): 

Matrix.__init__(self, numRows, numCols, isTransposed) 

values = self._convert_to_array(values, np.float64) 

assert len(values) == numRows * numCols 

self.values = values 

 

def __reduce__(self): 

return DenseMatrix, ( 

self.numRows, self.numCols, self.values.tostring(), 

int(self.isTransposed)) 

 

def __str__(self): 

""" 

Pretty printing of a DenseMatrix 

 

Examples 

-------- 

>>> dm = DenseMatrix(2, 2, range(4)) 

>>> print(dm) 

DenseMatrix([[ 0., 2.], 

[ 1., 3.]]) 

>>> dm = DenseMatrix(2, 2, range(4), isTransposed=True) 

>>> print(dm) 

DenseMatrix([[ 0., 1.], 

[ 2., 3.]]) 

""" 

# Inspired by __repr__ in scipy matrices. 

array_lines = repr(self.toArray()).splitlines() 

 

# We need to adjust six spaces which is the difference in number 

# of letters between "DenseMatrix" and "array" 

x = '\n'.join([(" " * 6 + line) for line in array_lines[1:]]) 

return array_lines[0].replace("array", "DenseMatrix") + "\n" + x 

 

def __repr__(self): 

""" 

Representation of a DenseMatrix 

 

Examples 

-------- 

>>> dm = DenseMatrix(2, 2, range(4)) 

>>> dm 

DenseMatrix(2, 2, [0.0, 1.0, 2.0, 3.0], False) 

""" 

# If the number of values are less than seventeen then return as it is. 

# Else return first eight values and last eight values. 

if len(self.values) < 17: 

entries = _format_float_list(self.values) 

else: 

entries = ( 

_format_float_list(self.values[:8]) + 

["..."] + 

_format_float_list(self.values[-8:]) 

) 

 

entries = ", ".join(entries) 

return "DenseMatrix({0}, {1}, [{2}], {3})".format( 

self.numRows, self.numCols, entries, self.isTransposed) 

 

def toArray(self): 

""" 

Return an numpy.ndarray 

 

Examples 

-------- 

>>> m = DenseMatrix(2, 2, range(4)) 

>>> m.toArray() 

array([[ 0., 2.], 

[ 1., 3.]]) 

""" 

if self.isTransposed: 

return np.asfortranarray( 

self.values.reshape((self.numRows, self.numCols))) 

else: 

return self.values.reshape((self.numRows, self.numCols), order='F') 

 

def toSparse(self): 

"""Convert to SparseMatrix""" 

if self.isTransposed: 

values = np.ravel(self.toArray(), order='F') 

else: 

values = self.values 

indices = np.nonzero(values)[0] 

colCounts = np.bincount(indices // self.numRows) 

colPtrs = np.cumsum(np.hstack( 

(0, colCounts, np.zeros(self.numCols - colCounts.size)))) 

values = values[indices] 

rowIndices = indices % self.numRows 

 

return SparseMatrix(self.numRows, self.numCols, colPtrs, rowIndices, values) 

 

def asML(self): 

""" 

Convert this matrix to the new mllib-local representation. 

This does NOT copy the data; it copies references. 

 

.. versionadded:: 2.0.0 

 

Returns 

------- 

:py:class:`pyspark.ml.linalg.DenseMatrix` 

""" 

return newlinalg.DenseMatrix(self.numRows, self.numCols, self.values, self.isTransposed) 

 

def __getitem__(self, indices): 

i, j = indices 

if i < 0 or i >= self.numRows: 

raise IndexError("Row index %d is out of range [0, %d)" 

% (i, self.numRows)) 

1175 ↛ 1176line 1175 didn't jump to line 1176, because the condition on line 1175 was never true if j >= self.numCols or j < 0: 

raise IndexError("Column index %d is out of range [0, %d)" 

% (j, self.numCols)) 

 

if self.isTransposed: 

return self.values[i * self.numCols + j] 

else: 

return self.values[i + j * self.numRows] 

 

def __eq__(self, other): 

1185 ↛ 1186line 1185 didn't jump to line 1186, because the condition on line 1185 was never true if (self.numRows != other.numRows or self.numCols != other.numCols): 

return False 

if isinstance(other, SparseMatrix): 

return np.all(self.toArray() == other.toArray()) 

 

self_values = np.ravel(self.toArray(), order='F') 

other_values = np.ravel(other.toArray(), order='F') 

return np.all(self_values == other_values) 

 

 

class SparseMatrix(Matrix): 

"""Sparse Matrix stored in CSC format.""" 

def __init__(self, numRows, numCols, colPtrs, rowIndices, values, 

isTransposed=False): 

Matrix.__init__(self, numRows, numCols, isTransposed) 

self.colPtrs = self._convert_to_array(colPtrs, np.int32) 

self.rowIndices = self._convert_to_array(rowIndices, np.int32) 

self.values = self._convert_to_array(values, np.float64) 

 

if self.isTransposed: 

1205 ↛ 1206line 1205 didn't jump to line 1206, because the condition on line 1205 was never true if self.colPtrs.size != numRows + 1: 

raise ValueError("Expected colPtrs of size %d, got %d." 

% (numRows + 1, self.colPtrs.size)) 

else: 

1209 ↛ 1210line 1209 didn't jump to line 1210, because the condition on line 1209 was never true if self.colPtrs.size != numCols + 1: 

raise ValueError("Expected colPtrs of size %d, got %d." 

% (numCols + 1, self.colPtrs.size)) 

1212 ↛ 1213line 1212 didn't jump to line 1213, because the condition on line 1212 was never true if self.rowIndices.size != self.values.size: 

raise ValueError("Expected rowIndices of length %d, got %d." 

% (self.rowIndices.size, self.values.size)) 

 

def __str__(self): 

""" 

Pretty printing of a SparseMatrix 

 

Examples 

-------- 

>>> sm1 = SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4]) 

>>> print(sm1) 

2 X 2 CSCMatrix 

(0,0) 2.0 

(1,0) 3.0 

(1,1) 4.0 

>>> sm1 = SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4], True) 

>>> print(sm1) 

2 X 2 CSRMatrix 

(0,0) 2.0 

(0,1) 3.0 

(1,1) 4.0 

""" 

spstr = "{0} X {1} ".format(self.numRows, self.numCols) 

if self.isTransposed: 

spstr += "CSRMatrix\n" 

else: 

spstr += "CSCMatrix\n" 

 

cur_col = 0 

smlist = [] 

 

# Display first 16 values. 

if len(self.values) <= 16: 

zipindval = zip(self.rowIndices, self.values) 

else: 

zipindval = zip(self.rowIndices[:16], self.values[:16]) 

for i, (rowInd, value) in enumerate(zipindval): 

if self.colPtrs[cur_col + 1] <= i: 

cur_col += 1 

if self.isTransposed: 

smlist.append('({0},{1}) {2}'.format( 

cur_col, rowInd, _format_float(value))) 

else: 

smlist.append('({0},{1}) {2}'.format( 

rowInd, cur_col, _format_float(value))) 

spstr += "\n".join(smlist) 

 

if len(self.values) > 16: 

spstr += "\n.." * 2 

return spstr 

 

def __repr__(self): 

""" 

Representation of a SparseMatrix 

 

Examples 

-------- 

>>> sm1 = SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4]) 

>>> sm1 

SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2.0, 3.0, 4.0], False) 

""" 

rowIndices = list(self.rowIndices) 

colPtrs = list(self.colPtrs) 

 

if len(self.values) <= 16: 

values = _format_float_list(self.values) 

 

else: 

values = ( 

_format_float_list(self.values[:8]) + 

["..."] + 

_format_float_list(self.values[-8:]) 

) 

rowIndices = rowIndices[:8] + ["..."] + rowIndices[-8:] 

 

if len(self.colPtrs) > 16: 

colPtrs = colPtrs[:8] + ["..."] + colPtrs[-8:] 

 

values = ", ".join(values) 

rowIndices = ", ".join([str(ind) for ind in rowIndices]) 

colPtrs = ", ".join([str(ptr) for ptr in colPtrs]) 

return "SparseMatrix({0}, {1}, [{2}], [{3}], [{4}], {5})".format( 

self.numRows, self.numCols, colPtrs, rowIndices, 

values, self.isTransposed) 

 

def __reduce__(self): 

return SparseMatrix, ( 

self.numRows, self.numCols, self.colPtrs.tostring(), 

self.rowIndices.tostring(), self.values.tostring(), 

int(self.isTransposed)) 

 

def __getitem__(self, indices): 

i, j = indices 

if i < 0 or i >= self.numRows: 

raise IndexError("Row index %d is out of range [0, %d)" 

% (i, self.numRows)) 

1309 ↛ 1310line 1309 didn't jump to line 1310, because the condition on line 1309 was never true if j < 0 or j >= self.numCols: 

raise IndexError("Column index %d is out of range [0, %d)" 

% (j, self.numCols)) 

 

# If a CSR matrix is given, then the row index should be searched 

# for in ColPtrs, and the column index should be searched for in the 

# corresponding slice obtained from rowIndices. 

if self.isTransposed: 

j, i = i, j 

 

colStart = self.colPtrs[j] 

colEnd = self.colPtrs[j + 1] 

nz = self.rowIndices[colStart: colEnd] 

ind = np.searchsorted(nz, i) + colStart 

if ind < colEnd and self.rowIndices[ind] == i: 

return self.values[ind] 

else: 

return 0.0 

 

def toArray(self): 

""" 

Return an numpy.ndarray 

""" 

A = np.zeros((self.numRows, self.numCols), dtype=np.float64, order='F') 

for k in range(self.colPtrs.size - 1): 

startptr = self.colPtrs[k] 

endptr = self.colPtrs[k + 1] 

if self.isTransposed: 

A[k, self.rowIndices[startptr:endptr]] = self.values[startptr:endptr] 

else: 

A[self.rowIndices[startptr:endptr], k] = self.values[startptr:endptr] 

return A 

 

def toDense(self): 

densevals = np.ravel(self.toArray(), order='F') 

return DenseMatrix(self.numRows, self.numCols, densevals) 

 

def asML(self): 

""" 

Convert this matrix to the new mllib-local representation. 

This does NOT copy the data; it copies references. 

 

.. versionadded:: 2.0.0 

 

Returns 

------- 

:py:class:`pyspark.ml.linalg.SparseMatrix` 

""" 

return newlinalg.SparseMatrix(self.numRows, self.numCols, self.colPtrs, self.rowIndices, 

self.values, self.isTransposed) 

 

# TODO: More efficient implementation: 

def __eq__(self, other): 

return np.all(self.toArray() == other.toArray()) 

 

 

class Matrices(object): 

@staticmethod 

def dense(numRows, numCols, values): 

""" 

Create a DenseMatrix 

""" 

return DenseMatrix(numRows, numCols, values) 

 

@staticmethod 

def sparse(numRows, numCols, colPtrs, rowIndices, values): 

""" 

Create a SparseMatrix 

""" 

return SparseMatrix(numRows, numCols, colPtrs, rowIndices, values) 

 

@staticmethod 

def fromML(mat): 

""" 

Convert a matrix from the new mllib-local representation. 

This does NOT copy the data; it copies references. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

mat : :py:class:`pyspark.ml.linalg.Matrix` 

 

Returns 

------- 

:py:class:`pyspark.mllib.linalg.Matrix` 

""" 

if isinstance(mat, newlinalg.DenseMatrix): 

return DenseMatrix(mat.numRows, mat.numCols, mat.values, mat.isTransposed) 

1398 ↛ 1402line 1398 didn't jump to line 1402, because the condition on line 1398 was never false elif isinstance(mat, newlinalg.SparseMatrix): 

return SparseMatrix(mat.numRows, mat.numCols, mat.colPtrs, mat.rowIndices, 

mat.values, mat.isTransposed) 

else: 

raise TypeError("Unsupported matrix type %s" % type(mat)) 

 

 

class QRDecomposition(object): 

""" 

Represents QR factors. 

""" 

def __init__(self, Q, R): 

self._Q = Q 

self._R = R 

 

@property 

@since('2.0.0') 

def Q(self): 

""" 

An orthogonal matrix Q in a QR decomposition. 

May be null if not computed. 

""" 

return self._Q 

 

@property 

@since('2.0.0') 

def R(self): 

""" 

An upper triangular matrix R in a QR decomposition. 

""" 

return self._R 

 

 

def _test(): 

import doctest 

import numpy 

try: 

# Numpy 1.14+ changed it's string format. 

numpy.set_printoptions(legacy='1.13') 

except TypeError: 

pass 

(failure_count, test_count) = doctest.testmod(optionflags=doctest.ELLIPSIS) 

1440 ↛ 1441line 1440 didn't jump to line 1441, because the condition on line 1440 was never true if failure_count: 

sys.exit(-1) 

 

if __name__ == "__main__": 

_test()