Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

""" 

Python package for feature in MLlib. 

""" 

import sys 

import warnings 

from py4j.protocol import Py4JJavaError 

 

from pyspark import since 

from pyspark.rdd import RDD 

from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper 

from pyspark.mllib.linalg import Vectors, _convert_to_vector 

from pyspark.mllib.util import JavaLoader, JavaSaveable 

 

__all__ = ['Normalizer', 'StandardScalerModel', 'StandardScaler', 

'HashingTF', 'IDFModel', 'IDF', 'Word2Vec', 'Word2VecModel', 

'ChiSqSelector', 'ChiSqSelectorModel', 'ElementwiseProduct'] 

 

 

class VectorTransformer(object): 

""" 

Base class for transformation of a vector or RDD of vector 

""" 

def transform(self, vector): 

""" 

Applies transformation on a vector. 

 

Parameters 

---------- 

vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

vector or convertible or RDD to be transformed. 

""" 

raise NotImplementedError 

 

 

class Normalizer(VectorTransformer): 

r""" 

Normalizes samples individually to unit L\ :sup:`p`\ norm 

 

For any 1 <= `p` < float('inf'), normalizes samples using 

sum(abs(vector) :sup:`p`) :sup:`(1/p)` as norm. 

 

For `p` = float('inf'), max(abs(vector)) will be used as norm for 

normalization. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

p : float, optional 

Normalization in L^p^ space, p = 2 by default. 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import Vectors 

>>> v = Vectors.dense(range(3)) 

>>> nor = Normalizer(1) 

>>> nor.transform(v) 

DenseVector([0.0, 0.3333, 0.6667]) 

 

>>> rdd = sc.parallelize([v]) 

>>> nor.transform(rdd).collect() 

[DenseVector([0.0, 0.3333, 0.6667])] 

 

>>> nor2 = Normalizer(float("inf")) 

>>> nor2.transform(v) 

DenseVector([0.0, 0.5, 1.0]) 

""" 

def __init__(self, p=2.0): 

assert p >= 1.0, "p should be greater than 1.0" 

self.p = float(p) 

 

def transform(self, vector): 

""" 

Applies unit length normalization on a vector. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

vector or RDD of vector to be normalized. 

 

Returns 

------- 

:py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

normalized vector(s). If the norm of the input is zero, it 

will return the input vector. 

""" 

if isinstance(vector, RDD): 

vector = vector.map(_convert_to_vector) 

else: 

vector = _convert_to_vector(vector) 

return callMLlibFunc("normalizeVector", self.p, vector) 

 

 

class JavaVectorTransformer(JavaModelWrapper, VectorTransformer): 

""" 

Wrapper for the model in JVM 

""" 

 

def transform(self, vector): 

""" 

Applies transformation on a vector or an RDD[Vector]. 

 

Parameters 

---------- 

vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

Input vector(s) to be transformed. 

 

Notes 

----- 

In Python, transform cannot currently be used within 

an RDD transformation or action. 

Call transform directly on the RDD instead. 

""" 

if isinstance(vector, RDD): 

vector = vector.map(_convert_to_vector) 

else: 

vector = _convert_to_vector(vector) 

return self.call("transform", vector) 

 

 

class StandardScalerModel(JavaVectorTransformer): 

""" 

Represents a StandardScaler model that can transform vectors. 

 

.. versionadded:: 1.2.0 

""" 

 

def transform(self, vector): 

""" 

Applies standardization transformation on a vector. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

Input vector(s) to be standardized. 

 

Returns 

------- 

:py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

Standardized vector(s). If the variance of a column is 

zero, it will return default `0.0` for the column with 

zero variance. 

 

Notes 

----- 

In Python, transform cannot currently be used within 

an RDD transformation or action. 

Call transform directly on the RDD instead. 

""" 

return JavaVectorTransformer.transform(self, vector) 

 

@since('1.4.0') 

def setWithMean(self, withMean): 

""" 

Setter of the boolean which decides 

whether it uses mean or not 

""" 

self.call("setWithMean", withMean) 

return self 

 

@since('1.4.0') 

def setWithStd(self, withStd): 

""" 

Setter of the boolean which decides 

whether it uses std or not 

""" 

self.call("setWithStd", withStd) 

return self 

 

@property 

@since('2.0.0') 

def withStd(self): 

""" 

Returns if the model scales the data to unit standard deviation. 

""" 

return self.call("withStd") 

 

@property 

@since('2.0.0') 

def withMean(self): 

""" 

Returns if the model centers the data before scaling. 

""" 

return self.call("withMean") 

 

@property 

@since('2.0.0') 

def std(self): 

""" 

Return the column standard deviation values. 

""" 

return self.call("std") 

 

@property 

@since('2.0.0') 

def mean(self): 

""" 

Return the column mean values. 

""" 

return self.call("mean") 

 

 

class StandardScaler(object): 

""" 

Standardizes features by removing the mean and scaling to unit 

variance using column summary statistics on the samples in the 

training set. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

withMean : bool, optional 

False by default. Centers the data with mean 

before scaling. It will build a dense output, so take 

care when applying to sparse input. 

withStd : bool, optional 

True by default. Scales the data to unit 

standard deviation. 

 

Examples 

-------- 

>>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])] 

>>> dataset = sc.parallelize(vs) 

>>> standardizer = StandardScaler(True, True) 

>>> model = standardizer.fit(dataset) 

>>> result = model.transform(dataset) 

>>> for r in result.collect(): r 

DenseVector([-0.7071, 0.7071, -0.7071]) 

DenseVector([0.7071, -0.7071, 0.7071]) 

>>> int(model.std[0]) 

4 

>>> int(model.mean[0]*10) 

9 

>>> model.withStd 

True 

>>> model.withMean 

True 

""" 

def __init__(self, withMean=False, withStd=True): 

262 ↛ 263line 262 didn't jump to line 263, because the condition on line 262 was never true if not (withMean or withStd): 

warnings.warn("Both withMean and withStd are false. The model does nothing.") 

self.withMean = withMean 

self.withStd = withStd 

 

def fit(self, dataset): 

""" 

Computes the mean and variance and stores as a model to be used 

for later scaling. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.RDD` 

The data used to compute the mean and variance 

to build the transformation model. 

 

Returns 

------- 

:py:class:`StandardScalerModel` 

""" 

dataset = dataset.map(_convert_to_vector) 

jmodel = callMLlibFunc("fitStandardScaler", self.withMean, self.withStd, dataset) 

return StandardScalerModel(jmodel) 

 

 

class ChiSqSelectorModel(JavaVectorTransformer): 

""" 

Represents a Chi Squared selector model. 

 

.. versionadded:: 1.4.0 

""" 

 

def transform(self, vector): 

""" 

Applies transformation on a vector. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

Input vector(s) to be transformed. 

 

Returns 

------- 

:py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

transformed vector(s). 

""" 

return JavaVectorTransformer.transform(self, vector) 

 

 

class ChiSqSelector(object): 

""" 

Creates a ChiSquared feature selector. 

The selector supports different selection methods: `numTopFeatures`, `percentile`, `fpr`, 

`fdr`, `fwe`. 

 

* `numTopFeatures` chooses a fixed number of top features according to a chi-squared test. 

 

* `percentile` is similar but chooses a fraction of all features 

instead of a fixed number. 

 

* `fpr` chooses all features whose p-values are below a threshold, 

thus controlling the false positive rate of selection. 

 

* `fdr` uses the `Benjamini-Hochberg procedure <https://en.wikipedia.org/wiki/ 

False_discovery_rate#Benjamini.E2.80.93Hochberg_procedure>`_ 

to choose all features whose false discovery rate is below a threshold. 

 

* `fwe` chooses all features whose p-values are below a threshold. The threshold is scaled by 

1/numFeatures, thus controlling the family-wise error rate of selection. 

 

By default, the selection method is `numTopFeatures`, with the default number of top features 

set to 50. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector, DenseVector 

>>> from pyspark.mllib.regression import LabeledPoint 

>>> data = sc.parallelize([ 

... LabeledPoint(0.0, SparseVector(3, {0: 8.0, 1: 7.0})), 

... LabeledPoint(1.0, SparseVector(3, {1: 9.0, 2: 6.0})), 

... LabeledPoint(1.0, [0.0, 9.0, 8.0]), 

... LabeledPoint(2.0, [7.0, 9.0, 5.0]), 

... LabeledPoint(2.0, [8.0, 7.0, 3.0]) 

... ]) 

>>> model = ChiSqSelector(numTopFeatures=1).fit(data) 

>>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0})) 

SparseVector(1, {}) 

>>> model.transform(DenseVector([7.0, 9.0, 5.0])) 

DenseVector([7.0]) 

>>> model = ChiSqSelector(selectorType="fpr", fpr=0.2).fit(data) 

>>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0})) 

SparseVector(1, {}) 

>>> model.transform(DenseVector([7.0, 9.0, 5.0])) 

DenseVector([7.0]) 

>>> model = ChiSqSelector(selectorType="percentile", percentile=0.34).fit(data) 

>>> model.transform(DenseVector([7.0, 9.0, 5.0])) 

DenseVector([7.0]) 

""" 

def __init__(self, numTopFeatures=50, selectorType="numTopFeatures", percentile=0.1, fpr=0.05, 

fdr=0.05, fwe=0.05): 

self.numTopFeatures = numTopFeatures 

self.selectorType = selectorType 

self.percentile = percentile 

self.fpr = fpr 

self.fdr = fdr 

self.fwe = fwe 

 

@since('2.1.0') 

def setNumTopFeatures(self, numTopFeatures): 

""" 

set numTopFeature for feature selection by number of top features. 

Only applicable when selectorType = "numTopFeatures". 

""" 

self.numTopFeatures = int(numTopFeatures) 

return self 

 

@since('2.1.0') 

def setPercentile(self, percentile): 

""" 

set percentile [0.0, 1.0] for feature selection by percentile. 

Only applicable when selectorType = "percentile". 

""" 

self.percentile = float(percentile) 

return self 

 

@since('2.1.0') 

def setFpr(self, fpr): 

""" 

set FPR [0.0, 1.0] for feature selection by FPR. 

Only applicable when selectorType = "fpr". 

""" 

self.fpr = float(fpr) 

return self 

 

@since('2.2.0') 

def setFdr(self, fdr): 

""" 

set FDR [0.0, 1.0] for feature selection by FDR. 

Only applicable when selectorType = "fdr". 

""" 

self.fdr = float(fdr) 

return self 

 

@since('2.2.0') 

def setFwe(self, fwe): 

""" 

set FWE [0.0, 1.0] for feature selection by FWE. 

Only applicable when selectorType = "fwe". 

""" 

self.fwe = float(fwe) 

return self 

 

@since('2.1.0') 

def setSelectorType(self, selectorType): 

""" 

set the selector type of the ChisqSelector. 

Supported options: "numTopFeatures" (default), "percentile", "fpr", "fdr", "fwe". 

""" 

self.selectorType = str(selectorType) 

return self 

 

def fit(self, data): 

""" 

Returns a ChiSquared feature selector. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` of :py:class:`pyspark.mllib.regression.LabeledPoint` 

containing the labeled dataset with categorical features. 

Real-valued features will be treated as categorical for each 

distinct value. Apply feature discretizer before using this function. 

""" 

jmodel = callMLlibFunc("fitChiSqSelector", self.selectorType, self.numTopFeatures, 

self.percentile, self.fpr, self.fdr, self.fwe, data) 

return ChiSqSelectorModel(jmodel) 

 

 

class PCAModel(JavaVectorTransformer): 

""" 

Model fitted by [[PCA]] that can project vectors to a low-dimensional space using PCA. 

 

.. versionadded:: 1.5.0 

""" 

 

 

class PCA(object): 

""" 

A feature transformer that projects vectors to a low-dimensional space using PCA. 

 

.. versionadded:: 1.5.0 

 

Examples 

-------- 

>>> data = [Vectors.sparse(5, [(1, 1.0), (3, 7.0)]), 

... Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]), 

... Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0])] 

>>> model = PCA(2).fit(sc.parallelize(data)) 

>>> pcArray = model.transform(Vectors.sparse(5, [(1, 1.0), (3, 7.0)])).toArray() 

>>> pcArray[0] 

1.648... 

>>> pcArray[1] 

-4.013... 

""" 

def __init__(self, k): 

""" 

Parameters 

---------- 

k : int 

number of principal components. 

""" 

self.k = int(k) 

 

def fit(self, data): 

""" 

Computes a [[PCAModel]] that contains the principal components of the input vectors. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

source vectors 

""" 

jmodel = callMLlibFunc("fitPCA", self.k, data) 

return PCAModel(jmodel) 

 

 

class HashingTF(object): 

""" 

Maps a sequence of terms to their term frequencies using the hashing 

trick. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

numFeatures : int, optional 

number of features (default: 2^20) 

 

Notes 

----- 

The terms must be hashable (can not be dict/set/list...). 

 

Examples 

-------- 

>>> htf = HashingTF(100) 

>>> doc = "a a b b c d".split(" ") 

>>> htf.transform(doc) 

SparseVector(100, {...}) 

""" 

def __init__(self, numFeatures=1 << 20): 

self.numFeatures = numFeatures 

self.binary = False 

 

@since("2.0.0") 

def setBinary(self, value): 

""" 

If True, term frequency vector will be binary such that non-zero 

term counts will be set to 1 

(default: False) 

""" 

self.binary = value 

return self 

 

@since('1.2.0') 

def indexOf(self, term): 

""" Returns the index of the input term. """ 

return hash(term) % self.numFeatures 

 

@since('1.2.0') 

def transform(self, document): 

""" 

Transforms the input document (list of terms) to term frequency 

vectors, or transform the RDD of document to RDD of term 

frequency vectors. 

""" 

546 ↛ 547line 546 didn't jump to line 547, because the condition on line 546 was never true if isinstance(document, RDD): 

return document.map(self.transform) 

 

freq = {} 

for term in document: 

i = self.indexOf(term) 

freq[i] = 1.0 if self.binary else freq.get(i, 0) + 1.0 

return Vectors.sparse(self.numFeatures, freq.items()) 

 

 

class IDFModel(JavaVectorTransformer): 

""" 

Represents an IDF model that can transform term frequency vectors. 

 

.. versionadded:: 1.2.0 

""" 

 

def transform(self, x): 

""" 

Transforms term frequency (TF) vectors to TF-IDF vectors. 

 

If `minDocFreq` was set for the IDF calculation, 

the terms which occur in fewer than `minDocFreq` 

documents will have an entry of 0. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

an RDD of term frequency vectors or a term frequency 

vector 

 

Returns 

------- 

:py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` 

an RDD of TF-IDF vectors or a TF-IDF vector 

 

Notes 

----- 

In Python, transform cannot currently be used within 

an RDD transformation or action. 

Call transform directly on the RDD instead. 

""" 

return JavaVectorTransformer.transform(self, x) 

 

@since('1.4.0') 

def idf(self): 

""" 

Returns the current IDF vector. 

""" 

return self.call('idf') 

 

@since('3.0.0') 

def docFreq(self): 

""" 

Returns the document frequency. 

""" 

return self.call('docFreq') 

 

@since('3.0.0') 

def numDocs(self): 

""" 

Returns number of documents evaluated to compute idf 

""" 

return self.call('numDocs') 

 

 

class IDF(object): 

""" 

Inverse document frequency (IDF). 

 

The standard formulation is used: `idf = log((m + 1) / (d(t) + 1))`, 

where `m` is the total number of documents and `d(t)` is the number 

of documents that contain term `t`. 

 

This implementation supports filtering out terms which do not appear 

in a minimum number of documents (controlled by the variable 

`minDocFreq`). For terms that are not in at least `minDocFreq` 

documents, the IDF is found as 0, resulting in TF-IDFs of 0. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

minDocFreq : int 

minimum of documents in which a term should appear for filtering 

 

Examples 

-------- 

>>> n = 4 

>>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)), 

... Vectors.dense([0.0, 1.0, 2.0, 3.0]), 

... Vectors.sparse(n, [1], [1.0])] 

>>> data = sc.parallelize(freqs) 

>>> idf = IDF() 

>>> model = idf.fit(data) 

>>> tfidf = model.transform(data) 

>>> for r in tfidf.collect(): r 

SparseVector(4, {1: 0.0, 3: 0.5754}) 

DenseVector([0.0, 0.0, 1.3863, 0.863]) 

SparseVector(4, {1: 0.0}) 

>>> model.transform(Vectors.dense([0.0, 1.0, 2.0, 3.0])) 

DenseVector([0.0, 0.0, 1.3863, 0.863]) 

>>> model.transform([0.0, 1.0, 2.0, 3.0]) 

DenseVector([0.0, 0.0, 1.3863, 0.863]) 

>>> model.transform(Vectors.sparse(n, (1, 3), (1.0, 2.0))) 

SparseVector(4, {1: 0.0, 3: 0.5754}) 

""" 

def __init__(self, minDocFreq=0): 

self.minDocFreq = minDocFreq 

 

def fit(self, dataset): 

""" 

Computes the inverse document frequency. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.RDD` 

an RDD of term frequency vectors 

""" 

669 ↛ 670line 669 didn't jump to line 670, because the condition on line 669 was never true if not isinstance(dataset, RDD): 

raise TypeError("dataset should be an RDD of term frequency vectors") 

jmodel = callMLlibFunc("fitIDF", self.minDocFreq, dataset.map(_convert_to_vector)) 

return IDFModel(jmodel) 

 

 

class Word2VecModel(JavaVectorTransformer, JavaSaveable, JavaLoader): 

""" 

class for Word2Vec model 

""" 

 

def transform(self, word): 

""" 

Transforms a word to its vector representation 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

word : str 

a word 

 

Returns 

------- 

:py:class:`pyspark.mllib.linalg.Vector` 

vector representation of word(s) 

 

Notes 

----- 

Local use only 

""" 

try: 

return self.call("transform", word) 

except Py4JJavaError: 

raise ValueError("%s not found" % word) 

 

def findSynonyms(self, word, num): 

""" 

Find synonyms of a word 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

 

word : str or :py:class:`pyspark.mllib.linalg.Vector` 

a word or a vector representation of word 

num : int 

number of synonyms to find 

 

Returns 

------- 

:py:class:`collections.abc.Iterable` 

array of (word, cosineSimilarity) 

 

Notes 

----- 

Local use only 

""" 

if not isinstance(word, str): 

word = _convert_to_vector(word) 

words, similarity = self.call("findSynonyms", word, num) 

return zip(words, similarity) 

 

@since('1.4.0') 

def getVectors(self): 

""" 

Returns a map of words to their vector representations. 

""" 

return self.call("getVectors") 

 

@classmethod 

@since('1.5.0') 

def load(cls, sc, path): 

""" 

Load a model from the given path. 

""" 

jmodel = sc._jvm.org.apache.spark.mllib.feature \ 

.Word2VecModel.load(sc._jsc.sc(), path) 

model = sc._jvm.org.apache.spark.mllib.api.python.Word2VecModelWrapper(jmodel) 

return Word2VecModel(model) 

 

 

class Word2Vec(object): 

"""Word2Vec creates vector representation of words in a text corpus. 

The algorithm first constructs a vocabulary from the corpus 

and then learns vector representation of words in the vocabulary. 

The vector representation can be used as features in 

natural language processing and machine learning algorithms. 

 

We used skip-gram model in our implementation and hierarchical 

softmax method to train the model. The variable names in the 

implementation matches the original C implementation. 

 

For original C implementation, 

see https://code.google.com/p/word2vec/ 

For research papers, see 

Efficient Estimation of Word Representations in Vector Space 

and Distributed Representations of Words and Phrases and their 

Compositionality. 

 

.. versionadded:: 1.2.0 

 

Examples 

-------- 

>>> sentence = "a b " * 100 + "a c " * 10 

>>> localDoc = [sentence, sentence] 

>>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" ")) 

>>> model = Word2Vec().setVectorSize(10).setSeed(42).fit(doc) 

 

Querying for synonyms of a word will not return that word: 

 

>>> syms = model.findSynonyms("a", 2) 

>>> [s[0] for s in syms] 

['b', 'c'] 

 

But querying for synonyms of a vector may return the word whose 

representation is that vector: 

 

>>> vec = model.transform("a") 

>>> syms = model.findSynonyms(vec, 2) 

>>> [s[0] for s in syms] 

['a', 'b'] 

 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> model.save(sc, path) 

>>> sameModel = Word2VecModel.load(sc, path) 

>>> model.transform("a") == sameModel.transform("a") 

True 

>>> syms = sameModel.findSynonyms("a", 2) 

>>> [s[0] for s in syms] 

['b', 'c'] 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except OSError: 

... pass 

""" 

def __init__(self): 

""" 

Construct Word2Vec instance 

""" 

self.vectorSize = 100 

self.learningRate = 0.025 

self.numPartitions = 1 

self.numIterations = 1 

self.seed = None 

self.minCount = 5 

self.windowSize = 5 

 

@since('1.2.0') 

def setVectorSize(self, vectorSize): 

""" 

Sets vector size (default: 100). 

""" 

self.vectorSize = vectorSize 

return self 

 

@since('1.2.0') 

def setLearningRate(self, learningRate): 

""" 

Sets initial learning rate (default: 0.025). 

""" 

self.learningRate = learningRate 

return self 

 

@since('1.2.0') 

def setNumPartitions(self, numPartitions): 

""" 

Sets number of partitions (default: 1). Use a small number for 

accuracy. 

""" 

self.numPartitions = numPartitions 

return self 

 

@since('1.2.0') 

def setNumIterations(self, numIterations): 

""" 

Sets number of iterations (default: 1), which should be smaller 

than or equal to number of partitions. 

""" 

self.numIterations = numIterations 

return self 

 

@since('1.2.0') 

def setSeed(self, seed): 

""" 

Sets random seed. 

""" 

self.seed = seed 

return self 

 

@since('1.4.0') 

def setMinCount(self, minCount): 

""" 

Sets minCount, the minimum number of times a token must appear 

to be included in the word2vec model's vocabulary (default: 5). 

""" 

self.minCount = minCount 

return self 

 

@since('2.0.0') 

def setWindowSize(self, windowSize): 

""" 

Sets window size (default: 5). 

""" 

self.windowSize = windowSize 

return self 

 

def fit(self, data): 

""" 

Computes the vector representation of each word in vocabulary. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

training data. RDD of list of string 

 

Returns 

------- 

:py:class:`Word2VecModel` 

""" 

894 ↛ 895line 894 didn't jump to line 895, because the condition on line 894 was never true if not isinstance(data, RDD): 

raise TypeError("data should be an RDD of list of string") 

jmodel = callMLlibFunc("trainWord2VecModel", data, int(self.vectorSize), 

float(self.learningRate), int(self.numPartitions), 

int(self.numIterations), self.seed, 

int(self.minCount), int(self.windowSize)) 

return Word2VecModel(jmodel) 

 

 

class ElementwiseProduct(VectorTransformer): 

""" 

Scales each column of the vector, with the supplied weight vector. 

i.e the elementwise product. 

 

.. versionadded:: 1.5.0 

 

Examples 

-------- 

>>> weight = Vectors.dense([1.0, 2.0, 3.0]) 

>>> eprod = ElementwiseProduct(weight) 

>>> a = Vectors.dense([2.0, 1.0, 3.0]) 

>>> eprod.transform(a) 

DenseVector([2.0, 2.0, 9.0]) 

>>> b = Vectors.dense([9.0, 3.0, 4.0]) 

>>> rdd = sc.parallelize([a, b]) 

>>> eprod.transform(rdd).collect() 

[DenseVector([2.0, 2.0, 9.0]), DenseVector([9.0, 6.0, 12.0])] 

""" 

def __init__(self, scalingVector): 

self.scalingVector = _convert_to_vector(scalingVector) 

 

@since('1.5.0') 

def transform(self, vector): 

""" 

Computes the Hadamard product of the vector. 

""" 

if isinstance(vector, RDD): 

vector = vector.map(_convert_to_vector) 

 

else: 

vector = _convert_to_vector(vector) 

return callMLlibFunc("elementwiseProductVector", self.scalingVector, vector) 

 

 

def _test(): 

import doctest 

from pyspark.sql import SparkSession 

globs = globals().copy() 

spark = SparkSession.builder\ 

.master("local[4]")\ 

.appName("mllib.feature tests")\ 

.getOrCreate() 

globs['sc'] = spark.sparkContext 

(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

spark.stop() 

949 ↛ 950line 949 didn't jump to line 950, because the condition on line 949 was never true if failure_count: 

sys.exit(-1) 

 

if __name__ == "__main__": 

sys.path.pop(0) 

_test()