Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #
'GaussianMixtureModel', 'GaussianMixture', 'PowerIterationClusteringModel', 'PowerIterationClustering', 'StreamingKMeans', 'StreamingKMeansModel', 'LDA', 'LDAModel']
""" A clustering model derived from the bisecting k-means method.
.. versionadded:: 2.0.0
Examples -------- >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) >>> bskm = BisectingKMeans() >>> model = bskm.train(sc.parallelize(data, 2), k=4) >>> p = array([0.0, 0.0]) >>> model.predict(p) 0 >>> model.k 4 >>> model.computeCost(p) 0.0 """
def clusterCenters(self): """Get the cluster centers, represented as a list of NumPy arrays."""
def k(self): """Get the number of clusters"""
""" Find the cluster that each of the points belongs to in this model.
.. versionadded:: 2.0.0
Parameters ---------- x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` A data point (or RDD of points) to determine cluster index. :py:class:`pyspark.mllib.linalg.Vector` can be replaced with equivalent objects (list, tuple, numpy.ndarray).
Returns ------- int or :py:class:`pyspark.RDD` of int Predicted cluster index or an RDD of predicted cluster indices if the input is an RDD. """
""" Return the Bisecting K-means cost (sum of squared distances of points to their nearest center) for this model on the given data. If provided with an RDD of points returns the sum.
.. versionadded:: 2.0.0
Parameters ---------- point : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` A data point (or RDD of points) to compute the cost(s). :py:class:`pyspark.mllib.linalg.Vector` can be replaced with equivalent objects (list, tuple, numpy.ndarray). """
""" A bisecting k-means algorithm based on the paper "A comparison of document clustering techniques" by Steinbach, Karypis, and Kumar, with modification to fit Spark. The algorithm starts from a single cluster that contains all points. Iteratively it finds divisible clusters on the bottom level and bisects each of them using k-means, until there are `k` leaf clusters in total or no leaf clusters are divisible. The bisecting steps of clusters on the same level are grouped together to increase parallelism. If bisecting all divisible clusters on the bottom level would result more than `k` leaf clusters, larger clusters get higher priority.
.. versionadded:: 2.0.0
Notes ----- See the original paper [1]_
.. [1] Steinbach, M. et al. "A Comparison of Document Clustering Techniques." (2000). KDD Workshop on Text Mining, 2000 http://glaros.dtc.umn.edu/gkhome/fetch/papers/docclusterKDDTMW00.pdf """
""" Runs the bisecting k-means algorithm return the model.
.. versionadded:: 2.0.0
Parameters ---------- rdd : :py:class:`pyspark.RDD` Training points as an `RDD` of `Vector` or convertible sequence types. k : int, optional The desired number of leaf clusters. The actual number could be smaller if there are no divisible leaf clusters. (default: 4) maxIterations : int, optional Maximum number of iterations allowed to split clusters. (default: 20) minDivisibleClusterSize : float, optional Minimum number of points (if >= 1.0) or the minimum proportion of points (if < 1.0) of a divisible cluster. (default: 1) seed : int, optional Random seed value for cluster initialization. (default: -1888008604 from classOf[BisectingKMeans].getName.##) """ "trainBisectingKMeans", rdd.map(_convert_to_vector), k, maxIterations, minDivisibleClusterSize, seed)
"""A clustering model derived from the k-means method.
.. versionadded:: 0.9.0
Examples -------- >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) >>> model = KMeans.train( ... sc.parallelize(data), 2, maxIterations=10, initializationMode="random", ... seed=50, initializationSteps=5, epsilon=1e-4) >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) True >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0])) True >>> model.k 2 >>> model.computeCost(sc.parallelize(data)) 2.0 >>> model = KMeans.train(sc.parallelize(data), 2) >>> sparse_data = [ ... SparseVector(3, {1: 1.0}), ... SparseVector(3, {1: 1.1}), ... SparseVector(3, {2: 1.0}), ... SparseVector(3, {2: 1.1}) ... ] >>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||", ... seed=50, initializationSteps=5, epsilon=1e-4) >>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.])) True >>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1])) True >>> model.predict(sparse_data[0]) == model.predict(sparse_data[1]) True >>> model.predict(sparse_data[2]) == model.predict(sparse_data[3]) True >>> isinstance(model.clusterCenters, list) True >>> import os, tempfile >>> path = tempfile.mkdtemp() >>> model.save(sc, path) >>> sameModel = KMeansModel.load(sc, path) >>> sameModel.predict(sparse_data[0]) == model.predict(sparse_data[0]) True >>> from shutil import rmtree >>> try: ... rmtree(path) ... except OSError: ... pass
>>> data = array([-383.1,-382.9, 28.7,31.2, 366.2,367.3]).reshape(3, 2) >>> model = KMeans.train(sc.parallelize(data), 3, maxIterations=0, ... initialModel = KMeansModel([(-1000.0,-1000.0),(5.0,5.0),(1000.0,1000.0)])) >>> model.clusterCenters [array([-1000., -1000.]), array([ 5., 5.]), array([ 1000., 1000.])] """
def clusterCenters(self): """Get the cluster centers, represented as a list of NumPy arrays."""
def k(self): """Total number of clusters."""
""" Find the cluster that each of the points belongs to in this model.
.. versionadded:: 0.9.0
Parameters ---------- x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` A data point (or RDD of points) to determine cluster index. :py:class:`pyspark.mllib.linalg.Vector` can be replaced with equivalent objects (list, tuple, numpy.ndarray).
Returns ------- int or :py:class:`pyspark.RDD` of int Predicted cluster index or an RDD of predicted cluster indices if the input is an RDD. """ return x.map(self.predict)
""" Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.
.. versionadded:: 1.4.0
Parameters ---------- rdd : ::py:class:`pyspark.RDD` The RDD of points to compute the cost on. """ [_convert_to_vector(c) for c in self.centers])
def save(self, sc, path): """ Save this model to the given path. """
def load(cls, sc, path): """ Load a model from the given path. """
""" K-means clustering.
.. versionadded:: 0.9.0 """
seed=None, initializationSteps=2, epsilon=1e-4, initialModel=None): """ Train a k-means clustering model.
.. versionadded:: 0.9.0
Parameters ---------- rdd : ::py:class:`pyspark.RDD` Training points as an `RDD` of :py:class:`pyspark.mllib.linalg.Vector` or convertible sequence types. k : int Number of clusters to create. maxIterations : int, optional Maximum number of iterations allowed. (default: 100) initializationMode : str, optional The initialization algorithm. This can be either "random" or "k-means||". (default: "k-means||") seed : int, optional Random seed value for cluster initialization. Set as None to generate seed based on system time. (default: None) initializationSteps : Number of steps for the k-means|| initialization mode. This is an advanced setting -- the default of 2 is almost always enough. (default: 2) epsilon : float, optional Distance threshold within which a center will be considered to have converged. If all centers move less than this Euclidean distance, iterations are stopped. (default: 1e-4) initialModel : :py:class:`KMeansModel`, optional Initial cluster centers can be provided as a KMeansModel object rather than using the random or k-means|| initializationModel. (default: None) """ raise TypeError("initialModel is of " + str(type(initialModel)) + ". It needs " "to be of <type 'KMeansModel'>") initializationMode, seed, initializationSteps, epsilon, clusterInitialModel)
""" A clustering model derived from the Gaussian Mixture Model method.
.. versionadded:: 1.3.0
Examples -------- >>> from pyspark.mllib.linalg import Vectors, DenseMatrix >>> from numpy.testing import assert_equal >>> from shutil import rmtree >>> import os, tempfile
>>> clusterdata_1 = sc.parallelize(array([-0.1,-0.05,-0.01,-0.1, ... 0.9,0.8,0.75,0.935, ... -0.83,-0.68,-0.91,-0.76 ]).reshape(6, 2), 2) >>> model = GaussianMixture.train(clusterdata_1, 3, convergenceTol=0.0001, ... maxIterations=50, seed=10) >>> labels = model.predict(clusterdata_1).collect() >>> labels[0]==labels[1] False >>> labels[1]==labels[2] False >>> labels[4]==labels[5] True >>> model.predict([-0.1,-0.05]) 0 >>> softPredicted = model.predictSoft([-0.1,-0.05]) >>> abs(softPredicted[0] - 1.0) < 0.03 True >>> abs(softPredicted[1] - 0.0) < 0.03 True >>> abs(softPredicted[2] - 0.0) < 0.03 True
>>> path = tempfile.mkdtemp() >>> model.save(sc, path) >>> sameModel = GaussianMixtureModel.load(sc, path) >>> assert_equal(model.weights, sameModel.weights) >>> mus, sigmas = list( ... zip(*[(g.mu, g.sigma) for g in model.gaussians])) >>> sameMus, sameSigmas = list( ... zip(*[(g.mu, g.sigma) for g in sameModel.gaussians])) >>> mus == sameMus True >>> sigmas == sameSigmas True >>> from shutil import rmtree >>> try: ... rmtree(path) ... except OSError: ... pass
>>> data = array([-5.1971, -2.5359, -3.8220, ... -5.2211, -5.0602, 4.7118, ... 6.8989, 3.4592, 4.6322, ... 5.7048, 4.6567, 5.5026, ... 4.5605, 5.2043, 6.2734]) >>> clusterdata_2 = sc.parallelize(data.reshape(5,3)) >>> model = GaussianMixture.train(clusterdata_2, 2, convergenceTol=0.0001, ... maxIterations=150, seed=4) >>> labels = model.predict(clusterdata_2).collect() >>> labels[0]==labels[1] True >>> labels[2]==labels[3]==labels[4] True """
def weights(self): """ Weights for each Gaussian distribution in the mixture, where weights[i] is the weight for Gaussian i, and weights.sum == 1. """
def gaussians(self): """ Array of MultivariateGaussian where gaussians[i] represents the Multivariate Gaussian (Normal) Distribution for Gaussian i. """ MultivariateGaussian(gaussian[0], gaussian[1]) for gaussian in self.call("gaussians")]
def k(self): """Number of gaussians in mixture."""
""" Find the cluster to which the point 'x' or each point in RDD 'x' has maximum membership in this model.
.. versionadded:: 1.3.0
Parameters ---------- x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` A feature vector or an RDD of vectors representing data points.
Returns ------- numpy.float64 or :py:class:`pyspark.RDD` of int Predicted cluster label or an RDD of predicted cluster labels if the input is an RDD. """ else:
""" Find the membership of point 'x' or each point in RDD 'x' to all mixture components.
.. versionadded:: 1.3.0
Parameters ---------- x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` A feature vector or an RDD of vectors representing data points.
Returns ------- numpy.ndarray or :py:class:`pyspark.RDD` The membership value to all mixture components for vector 'x' or each vector in RDD 'x'. """ _convert_to_vector(self.weights), means, sigmas) else:
def load(cls, sc, path): """Load the GaussianMixtureModel from disk.
.. versionadded:: 1.5.0
Parameters ---------- sc : :py:class:`SparkContext` path : str Path to where the model is stored. """
""" Learning algorithm for Gaussian Mixtures using the expectation-maximization algorithm.
.. versionadded:: 1.3.0 """
""" Train a Gaussian Mixture clustering model.
.. versionadded:: 1.3.0
Parameters ---------- rdd : ::py:class:`pyspark.RDD` Training points as an `RDD` of :py:class:`pyspark.mllib.linalg.Vector` or convertible sequence types. k : int Number of independent Gaussians in the mixture model. convergenceTol : float, optional Maximum change in log-likelihood at which convergence is considered to have occurred. (default: 1e-3) maxIterations : int, optional Maximum number of iterations allowed. (default: 100) seed : int, optional Random seed for initial Gaussian distribution. Set as None to generate seed based on system time. (default: None) initialModel : GaussianMixtureModel, optional Initial GMM starting point, bypassing the random initialization. (default: None) """ raise ValueError("Mismatched cluster count, initialModel.k = %s, however k = %s" % (initialModel.k, k)) k, convergenceTol, maxIterations, seed, initialModelWeights, initialModelMu, initialModelSigma)
""" Model produced by :py:class:`PowerIterationClustering`.
.. versionadded:: 1.5.0
Examples -------- >>> import math >>> def genCircle(r, n): ... points = [] ... for i in range(0, n): ... theta = 2.0 * math.pi * i / n ... points.append((r * math.cos(theta), r * math.sin(theta))) ... return points >>> def sim(x, y): ... dist2 = (x[0] - y[0]) * (x[0] - y[0]) + (x[1] - y[1]) * (x[1] - y[1]) ... return math.exp(-dist2 / 2.0) >>> r1 = 1.0 >>> n1 = 10 >>> r2 = 4.0 >>> n2 = 40 >>> n = n1 + n2 >>> points = genCircle(r1, n1) + genCircle(r2, n2) >>> similarities = [(i, j, sim(points[i], points[j])) for i in range(1, n) for j in range(0, i)] >>> rdd = sc.parallelize(similarities, 2) >>> model = PowerIterationClustering.train(rdd, 2, 40) >>> model.k 2 >>> result = sorted(model.assignments().collect(), key=lambda x: x.id) >>> result[0].cluster == result[1].cluster == result[2].cluster == result[3].cluster True >>> result[4].cluster == result[5].cluster == result[6].cluster == result[7].cluster True >>> import os, tempfile >>> path = tempfile.mkdtemp() >>> model.save(sc, path) >>> sameModel = PowerIterationClusteringModel.load(sc, path) >>> sameModel.k 2 >>> result = sorted(model.assignments().collect(), key=lambda x: x.id) >>> result[0].cluster == result[1].cluster == result[2].cluster == result[3].cluster True >>> result[4].cluster == result[5].cluster == result[6].cluster == result[7].cluster True >>> from shutil import rmtree >>> try: ... rmtree(path) ... except OSError: ... pass """
def k(self): """ Returns the number of clusters. """
def assignments(self): """ Returns the cluster assignments of this model. """ lambda x: (PowerIterationClustering.Assignment(*x)))
def load(cls, sc, path): """ Load a model from the given path. """ sc._jvm.org.apache.spark.mllib.api.python.PowerIterationClusteringModelWrapper(model)
""" Power Iteration Clustering (PIC), a scalable graph clustering algorithm.
Developed by Lin and Cohen [1]_. From the abstract:
"PIC finds a very low-dimensional embedding of a dataset using truncated power iteration on a normalized pair-wise similarity matrix of the data."
.. versionadded:: 1.5.0
.. [1] Lin, Frank & Cohen, William. (2010). Power Iteration Clustering. http://www.cs.cmu.edu/~frank/papers/icml2010-pic-final.pdf """
r""" Train PowerIterationClusteringModel
.. versionadded:: 1.5.0
Parameters ---------- rdd : :py:class:`pyspark.RDD` An RDD of (i, j, s\ :sub:`ij`\) tuples representing the affinity matrix, which is the matrix A in the PIC paper. The similarity s\ :sub:`ij`\ must be nonnegative. This is a symmetric matrix and hence s\ :sub:`ij`\ = s\ :sub:`ji`\ For any (i, j) with nonzero similarity, there should be either (i, j, s\ :sub:`ij`\) or (j, i, s\ :sub:`ji`\) in the input. Tuples with i = j are ignored, because it is assumed s\ :sub:`ij`\ = 0.0. k : int Number of clusters. maxIterations : int, optional Maximum number of iterations of the PIC algorithm. (default: 100) initMode : str, optional Initialization mode. This can be either "random" to use a random vector as vertex properties, or "degree" to use normalized sum similarities. (default: "random") """ rdd.map(_convert_to_vector), int(k), int(maxIterations), initMode)
""" Represents an (id, cluster) tuple.
.. versionadded:: 1.5.0 """
""" Clustering model which can perform an online update of the centroids.
The update formula for each centroid is given by
- c_t+1 = ((c_t * n_t * a) + (x_t * m_t)) / (n_t + m_t) - n_t+1 = n_t * a + m_t
where
- c_t: Centroid at the n_th iteration. - n_t: Number of samples (or) weights associated with the centroid at the n_th iteration. - x_t: Centroid of the new data closest to c_t. - m_t: Number of samples (or) weights of the new data closest to c_t - c_t+1: New centroid. - n_t+1: New number of weights. - a: Decay Factor, which gives the forgetfulness.
.. versionadded:: 1.5.0
Parameters ---------- clusterCenters : list of :py:class:`pyspark.mllib.linalg.Vector` or covertible Initial cluster centers. clusterWeights : :py:class:`pyspark.mllib.linalg.Vector` or covertible List of weights assigned to each cluster.
Notes ----- If a is set to 1, it is the weighted mean of the previous and new data. If it set to zero, the old centroids are completely forgotten.
Examples -------- >>> initCenters = [[0.0, 0.0], [1.0, 1.0]] >>> initWeights = [1.0, 1.0] >>> stkm = StreamingKMeansModel(initCenters, initWeights) >>> data = sc.parallelize([[-0.1, -0.1], [0.1, 0.1], ... [0.9, 0.9], [1.1, 1.1]]) >>> stkm = stkm.update(data, 1.0, "batches") >>> stkm.centers array([[ 0., 0.], [ 1., 1.]]) >>> stkm.predict([-0.1, -0.1]) 0 >>> stkm.predict([0.9, 0.9]) 1 >>> stkm.clusterWeights [3.0, 3.0] >>> decayFactor = 0.0 >>> data = sc.parallelize([DenseVector([1.5, 1.5]), DenseVector([0.2, 0.2])]) >>> stkm = stkm.update(data, 0.0, "batches") >>> stkm.centers array([[ 0.2, 0.2], [ 1.5, 1.5]]) >>> stkm.clusterWeights [1.0, 1.0] >>> stkm.predict([0.2, 0.2]) 0 >>> stkm.predict([1.5, 1.5]) 1 """
def clusterWeights(self): """Return the cluster weights."""
def update(self, data, decayFactor, timeUnit): """Update the centroids, according to data
.. versionadded:: 1.5.0
Parameters ---------- data : :py:class:`pyspark.RDD` RDD with new data for the model update. decayFactor : float Forgetfulness of the previous centroids. timeUnit : str Can be "batches" or "points". If points, then the decay factor is raised to the power of number of new points and if batches, then decay factor will be used as is. """ raise TypeError("Data should be of an RDD, got %s." % type(data)) raise ValueError( "timeUnit should be 'batches' or 'points', got %s." % timeUnit) "updateStreamingKMeansModel", vectorCenters, self._clusterWeights, data, decayFactor, timeUnit)
""" Provides methods to set k, decayFactor, timeUnit to configure the KMeans algorithm for fitting and predicting on incoming dstreams. More details on how the centroids are updated are provided under the docs of StreamingKMeansModel.
.. versionadded:: 1.5.0
Parameters ---------- k : int, optional Number of clusters. (default: 2) decayFactor : float, optional Forgetfulness of the previous centroids. (default: 1.0) timeUnit : str, optional Can be "batches" or "points". If points, then the decay factor is raised to the power of number of new points and if batches, then decay factor will be used as is. (default: "batches") """ raise ValueError( "timeUnit should be 'batches' or 'points', got %s." % timeUnit)
def latestModel(self): """Return the latest model"""
"Initial centers should be set either by setInitialCenters " "or setRandomCenters.") raise TypeError( "Expected dstream to be of type DStream, " "got type %s" % type(dstream))
def setK(self, k): """Set number of clusters."""
def setDecayFactor(self, decayFactor): """Set decay factor."""
def setHalfLife(self, halfLife, timeUnit): """ Set number of batches after which the centroids of that particular batch has half the weightage. """ self._timeUnit = timeUnit self._decayFactor = exp(log(0.5) / halfLife) return self
def setInitialCenters(self, centers, weights): """ Set initial centers. Should be set before calling trainOn. """
def setRandomCenters(self, dim, weight, seed): """ Set the initial centers to be random samples from a gaussian population with constant weights. """ rng = random.RandomState(seed) clusterCenters = rng.randn(self._k, dim) clusterWeights = tile(weight, self._k) self._model = StreamingKMeansModel(clusterCenters, clusterWeights) return self
def trainOn(self, dstream): """Train the model on the incoming dstream."""
def predictOn(self, dstream): """ Make predictions on a dstream. Returns a transformed dstream object """
def predictOnValues(self, dstream): """ Make predictions on a keyed dstream. Returns a transformed dstream object. """ self._validate(dstream) return dstream.mapValues(lambda x: self._model.predict(x))
""" A clustering model derived from the LDA method.
Latent Dirichlet Allocation (LDA), a topic model designed for text documents. Terminology
- "word" = "term": an element of the vocabulary - "token": instance of a term appearing in a document - "topic": multinomial distribution over words representing some concept
.. versionadded:: 1.5.0
Notes ----- See the original LDA paper (journal version) [1]_
.. [1] Blei, D. et al. "Latent Dirichlet Allocation." J. Mach. Learn. Res. 3 (2003): 993-1022. https://www.jmlr.org/papers/v3/blei03a
Examples -------- >>> from pyspark.mllib.linalg import Vectors >>> from numpy.testing import assert_almost_equal, assert_equal >>> data = [ ... [1, Vectors.dense([0.0, 1.0])], ... [2, SparseVector(2, {0: 1.0})], ... ] >>> rdd = sc.parallelize(data) >>> model = LDA.train(rdd, k=2, seed=1) >>> model.vocabSize() 2 >>> model.describeTopics() [([1, 0], [0.5..., 0.49...]), ([0, 1], [0.5..., 0.49...])] >>> model.describeTopics(1) [([1], [0.5...]), ([0], [0.5...])]
>>> topics = model.topicsMatrix() >>> topics_expect = array([[0.5, 0.5], [0.5, 0.5]]) >>> assert_almost_equal(topics, topics_expect, 1)
>>> import os, tempfile >>> from shutil import rmtree >>> path = tempfile.mkdtemp() >>> model.save(sc, path) >>> sameModel = LDAModel.load(sc, path) >>> assert_equal(sameModel.topicsMatrix(), model.topicsMatrix()) >>> sameModel.vocabSize() == model.vocabSize() True >>> try: ... rmtree(path) ... except OSError: ... pass """
def topicsMatrix(self): """Inferred topics, where each topic is represented by a distribution over terms."""
def vocabSize(self): """Vocabulary size (number of terms or terms in the vocabulary)"""
"""Return the topics described by weighted terms.
.. versionadded:: 1.6.0 .. warning:: If vocabSize and k are large, this can return a large object!
Parameters ---------- maxTermsPerTopic : int, optional Maximum number of terms to collect for each topic. (default: vocabulary size)
Returns ------- list Array over topics. Each topic is represented as a pair of matching arrays: (term indices, term weights in topic). Each topic's terms are sorted in order of decreasing weight. """ else:
def load(cls, sc, path): """Load the LDAModel from disk.
.. versionadded:: 1.5.0
Parameters ---------- sc : :py:class:`pyspark.SparkContext` path : str Path to where the model is stored. """ raise TypeError("sc should be a SparkContext, got type %s" % type(sc)) raise TypeError("path should be a string, got type %s" % type(path))
""" Train Latent Dirichlet Allocation (LDA) model.
.. versionadded:: 1.5.0 """
topicConcentration=-1.0, seed=None, checkpointInterval=10, optimizer="em"): """Train a LDA model.
.. versionadded:: 1.5.0
Parameters ---------- rdd : :py:class:`pyspark.RDD` RDD of documents, which are tuples of document IDs and term (word) count vectors. The term count vectors are "bags of words" with a fixed-size vocabulary (where the vocabulary size is the length of the vector). Document IDs must be unique and >= 0. k : int, optional Number of topics to infer, i.e., the number of soft cluster centers. (default: 10) maxIterations : int, optional Maximum number of iterations allowed. (default: 20) docConcentration : float, optional Concentration parameter (commonly named "alpha") for the prior placed on documents' distributions over topics ("theta"). (default: -1.0) topicConcentration : float, optional Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics' distributions over terms. (default: -1.0) seed : int, optional Random seed for cluster initialization. Set as None to generate seed based on system time. (default: None) checkpointInterval : int, optional Period (in iterations) between checkpoints. (default: 10) optimizer : str, optional LDAOptimizer used to perform the actual calculation. Currently "em", "online" are supported. (default: "em") """ docConcentration, topicConcentration, seed, checkpointInterval, optimizer)
# Numpy 1.14+ changed it's string format. except TypeError: pass sys.exit(-1)
|