Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

from math import exp 

import sys 

import warnings 

 

import numpy 

 

from pyspark import RDD, since 

from pyspark.mllib.common import callMLlibFunc, _py2java, _java2py 

from pyspark.mllib.linalg import _convert_to_vector 

from pyspark.mllib.regression import ( 

LabeledPoint, LinearModel, _regression_train_wrapper, 

StreamingLinearAlgorithm) 

from pyspark.mllib.util import Saveable, Loader, inherit_doc 

 

 

__all__ = ['LogisticRegressionModel', 'LogisticRegressionWithSGD', 'LogisticRegressionWithLBFGS', 

'SVMModel', 'SVMWithSGD', 'NaiveBayesModel', 'NaiveBayes', 

'StreamingLogisticRegressionWithSGD'] 

 

 

class LinearClassificationModel(LinearModel): 

""" 

A private abstract class representing a multiclass classification 

model. The categories are represented by int values: 0, 1, 2, etc. 

""" 

def __init__(self, weights, intercept): 

super(LinearClassificationModel, self).__init__(weights, intercept) 

self._threshold = None 

 

@since('1.4.0') 

def setThreshold(self, value): 

""" 

Sets the threshold that separates positive predictions from 

negative predictions. An example with prediction score greater 

than or equal to this threshold is identified as a positive, 

and negative otherwise. It is used for binary classification 

only. 

""" 

self._threshold = value 

 

@property 

@since('1.4.0') 

def threshold(self): 

""" 

Returns the threshold (if any) used for converting raw 

prediction scores into 0/1 predictions. It is used for 

binary classification only. 

""" 

return self._threshold 

 

@since('1.4.0') 

def clearThreshold(self): 

""" 

Clears the threshold so that `predict` will output raw 

prediction scores. It is used for binary classification only. 

""" 

self._threshold = None 

 

@since('1.4.0') 

def predict(self, test): 

""" 

Predict values for a single data point or an RDD of points 

using the model trained. 

""" 

raise NotImplementedError 

 

 

class LogisticRegressionModel(LinearClassificationModel): 

 

""" 

Classification model trained using Multinomial/Binary Logistic 

Regression. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

weights : :py:class:`pyspark.mllib.linalg.Vector` 

Weights computed for every feature. 

intercept : float 

Intercept computed for this model. (Only used in Binary Logistic 

Regression. In Multinomial Logistic Regression, the intercepts will 

not be a single value, so the intercepts will be part of the 

weights.) 

numFeatures : int 

The dimension of the features. 

numClasses : int 

The number of possible outcomes for k classes classification problem 

in Multinomial Logistic Regression. By default, it is binary 

logistic regression so numClasses will be set to 2. 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector 

>>> data = [ 

... LabeledPoint(0.0, [0.0, 1.0]), 

... LabeledPoint(1.0, [1.0, 0.0]), 

... ] 

>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data), iterations=10) 

>>> lrm.predict([1.0, 0.0]) 

1 

>>> lrm.predict([0.0, 1.0]) 

0 

>>> lrm.predict(sc.parallelize([[1.0, 0.0], [0.0, 1.0]])).collect() 

[1, 0] 

>>> lrm.clearThreshold() 

>>> lrm.predict([0.0, 1.0]) 

0.279... 

 

>>> sparse_data = [ 

... LabeledPoint(0.0, SparseVector(2, {0: 0.0})), 

... LabeledPoint(1.0, SparseVector(2, {1: 1.0})), 

... LabeledPoint(0.0, SparseVector(2, {0: 1.0})), 

... LabeledPoint(1.0, SparseVector(2, {1: 2.0})) 

... ] 

>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data), iterations=10) 

>>> lrm.predict(numpy.array([0.0, 1.0])) 

1 

>>> lrm.predict(numpy.array([1.0, 0.0])) 

0 

>>> lrm.predict(SparseVector(2, {1: 1.0})) 

1 

>>> lrm.predict(SparseVector(2, {0: 1.0})) 

0 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> lrm.save(sc, path) 

>>> sameModel = LogisticRegressionModel.load(sc, path) 

>>> sameModel.predict(numpy.array([0.0, 1.0])) 

1 

>>> sameModel.predict(SparseVector(2, {0: 1.0})) 

0 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except: 

... pass 

>>> multi_class_data = [ 

... LabeledPoint(0.0, [0.0, 1.0, 0.0]), 

... LabeledPoint(1.0, [1.0, 0.0, 0.0]), 

... LabeledPoint(2.0, [0.0, 0.0, 1.0]) 

... ] 

>>> data = sc.parallelize(multi_class_data) 

>>> mcm = LogisticRegressionWithLBFGS.train(data, iterations=10, numClasses=3) 

>>> mcm.predict([0.0, 0.5, 0.0]) 

0 

>>> mcm.predict([0.8, 0.0, 0.0]) 

1 

>>> mcm.predict([0.0, 0.0, 0.3]) 

2 

""" 

def __init__(self, weights, intercept, numFeatures, numClasses): 

super(LogisticRegressionModel, self).__init__(weights, intercept) 

self._numFeatures = int(numFeatures) 

self._numClasses = int(numClasses) 

self._threshold = 0.5 

if self._numClasses == 2: 

self._dataWithBiasSize = None 

self._weightsMatrix = None 

else: 

self._dataWithBiasSize = self._coeff.size // (self._numClasses - 1) 

self._weightsMatrix = self._coeff.toArray().reshape(self._numClasses - 1, 

self._dataWithBiasSize) 

 

@property 

@since('1.4.0') 

def numFeatures(self): 

""" 

Dimension of the features. 

""" 

return self._numFeatures 

 

@property 

@since('1.4.0') 

def numClasses(self): 

""" 

Number of possible outcomes for k classes classification problem 

in Multinomial Logistic Regression. 

""" 

return self._numClasses 

 

@since('0.9.0') 

def predict(self, x): 

""" 

Predict values for a single data point or an RDD of points 

using the model trained. 

""" 

if isinstance(x, RDD): 

return x.map(lambda v: self.predict(v)) 

 

x = _convert_to_vector(x) 

if self.numClasses == 2: 

margin = self.weights.dot(x) + self._intercept 

if margin > 0: 

prob = 1 / (1 + exp(-margin)) 

else: 

exp_margin = exp(margin) 

prob = exp_margin / (1 + exp_margin) 

if self._threshold is None: 

return prob 

else: 

return 1 if prob > self._threshold else 0 

else: 

best_class = 0 

max_margin = 0.0 

223 ↛ 224line 223 didn't jump to line 224, because the condition on line 223 was never true if x.size + 1 == self._dataWithBiasSize: 

for i in range(0, self._numClasses - 1): 

margin = x.dot(self._weightsMatrix[i][0:x.size]) + \ 

self._weightsMatrix[i][x.size] 

if margin > max_margin: 

max_margin = margin 

best_class = i + 1 

else: 

for i in range(0, self._numClasses - 1): 

margin = x.dot(self._weightsMatrix[i]) 

if margin > max_margin: 

max_margin = margin 

best_class = i + 1 

return best_class 

 

@since('1.4.0') 

def save(self, sc, path): 

""" 

Save this model to the given path. 

""" 

java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel( 

_py2java(sc, self._coeff), self.intercept, self.numFeatures, self.numClasses) 

java_model.save(sc._jsc.sc(), path) 

 

@classmethod 

@since('1.4.0') 

def load(cls, sc, path): 

""" 

Load a model from the given path. 

""" 

java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel.load( 

sc._jsc.sc(), path) 

weights = _java2py(sc, java_model.weights()) 

intercept = java_model.intercept() 

numFeatures = java_model.numFeatures() 

numClasses = java_model.numClasses() 

threshold = java_model.getThreshold().get() 

model = LogisticRegressionModel(weights, intercept, numFeatures, numClasses) 

model.setThreshold(threshold) 

return model 

 

def __repr__(self): 

return self._call_java("toString") 

 

 

class LogisticRegressionWithSGD(object): 

""" 

Train a classification model for Binary Logistic Regression using Stochastic Gradient Descent. 

 

.. versionadded:: 0.9.0 

.. deprecated:: 2.0.0 

Use ml.classification.LogisticRegression or LogisticRegressionWithLBFGS. 

""" 

@classmethod 

def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0, 

initialWeights=None, regParam=0.01, regType="l2", intercept=False, 

validateData=True, convergenceTol=0.001): 

""" 

Train a logistic regression model on the given data. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`. 

iterations : int, optional 

The number of iterations. 

(default: 100) 

step : float, optional 

The step parameter used in SGD. 

(default: 1.0) 

miniBatchFraction : float, optional 

Fraction of data to be used for each SGD iteration. 

(default: 1.0) 

initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional 

The initial weights. 

(default: None) 

regParam : float, optional 

The regularizer parameter. 

(default: 0.01) 

regType : str, optional 

The type of regularizer used for training our model. 

Supported values: 

 

- "l1" for using L1 regularization 

- "l2" for using L2 regularization (default) 

- None for no regularization 

 

intercept : bool, optional 

Boolean parameter which indicates the use or not of the 

augmented representation for training data (i.e., whether bias 

features are activated or not). 

(default: False) 

validateData : bool, optional 

Boolean parameter which indicates if the algorithm should 

validate data before training. 

(default: True) 

convergenceTol : float, optional 

A condition which decides iteration termination. 

(default: 0.001) 

""" 

warnings.warn( 

"Deprecated in 2.0.0. Use ml.classification.LogisticRegression or " 

"LogisticRegressionWithLBFGS.", FutureWarning) 

 

def train(rdd, i): 

return callMLlibFunc("trainLogisticRegressionModelWithSGD", rdd, int(iterations), 

float(step), float(miniBatchFraction), i, float(regParam), regType, 

bool(intercept), bool(validateData), float(convergenceTol)) 

 

return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights) 

 

 

class LogisticRegressionWithLBFGS(object): 

""" 

Train a classification model for Multinomial/Binary Logistic Regression 

using Limited-memory BFGS. 

 

Standard feature scaling and L2 regularization are used by default. 

.. versionadded:: 1.2.0 

""" 

@classmethod 

def train(cls, data, iterations=100, initialWeights=None, regParam=0.0, regType="l2", 

intercept=False, corrections=10, tolerance=1e-6, validateData=True, numClasses=2): 

""" 

Train a logistic regression model on the given data. 

 

.. versionadded:: 1.2.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`. 

iterations : int, optional 

The number of iterations. 

(default: 100) 

initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional 

The initial weights. 

(default: None) 

regParam : float, optional 

The regularizer parameter. 

(default: 0.01) 

regType : str, optional 

The type of regularizer used for training our model. 

Supported values: 

 

- "l1" for using L1 regularization 

- "l2" for using L2 regularization (default) 

- None for no regularization 

 

intercept : bool, optional 

Boolean parameter which indicates the use or not of the 

augmented representation for training data (i.e., whether bias 

features are activated or not). 

(default: False) 

corrections : int, optional 

The number of corrections used in the LBFGS update. 

If a known updater is used for binary classification, 

it calls the ml implementation and this parameter will 

have no effect. (default: 10) 

tolerance : float, optional 

The convergence tolerance of iterations for L-BFGS. 

(default: 1e-6) 

validateData : bool, optional 

Boolean parameter which indicates if the algorithm should 

validate data before training. 

(default: True) 

numClasses : int, optional 

The number of classes (i.e., outcomes) a label can take in 

Multinomial Logistic Regression. 

(default: 2) 

 

Examples 

-------- 

>>> data = [ 

... LabeledPoint(0.0, [0.0, 1.0]), 

... LabeledPoint(1.0, [1.0, 0.0]), 

... ] 

>>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data), iterations=10) 

>>> lrm.predict([1.0, 0.0]) 

1 

>>> lrm.predict([0.0, 1.0]) 

0 

""" 

def train(rdd, i): 

return callMLlibFunc("trainLogisticRegressionModelWithLBFGS", rdd, int(iterations), i, 

float(regParam), regType, bool(intercept), int(corrections), 

float(tolerance), bool(validateData), int(numClasses)) 

 

413 ↛ 421line 413 didn't jump to line 421, because the condition on line 413 was never false if initialWeights is None: 

if numClasses == 2: 

initialWeights = [0.0] * len(data.first().features) 

else: 

417 ↛ 418line 417 didn't jump to line 418, because the condition on line 417 was never true if intercept: 

initialWeights = [0.0] * (len(data.first().features) + 1) * (numClasses - 1) 

else: 

initialWeights = [0.0] * len(data.first().features) * (numClasses - 1) 

return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights) 

 

 

class SVMModel(LinearClassificationModel): 

 

""" 

Model for Support Vector Machines (SVMs). 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

weights : :py:class:`pyspark.mllib.linalg.Vector` 

Weights computed for every feature. 

intercept : float 

Intercept computed for this model. 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector 

>>> data = [ 

... LabeledPoint(0.0, [0.0]), 

... LabeledPoint(1.0, [1.0]), 

... LabeledPoint(1.0, [2.0]), 

... LabeledPoint(1.0, [3.0]) 

... ] 

>>> svm = SVMWithSGD.train(sc.parallelize(data), iterations=10) 

>>> svm.predict([1.0]) 

1 

>>> svm.predict(sc.parallelize([[1.0]])).collect() 

[1] 

>>> svm.clearThreshold() 

>>> svm.predict(numpy.array([1.0])) 

1.44... 

 

>>> sparse_data = [ 

... LabeledPoint(0.0, SparseVector(2, {0: -1.0})), 

... LabeledPoint(1.0, SparseVector(2, {1: 1.0})), 

... LabeledPoint(0.0, SparseVector(2, {0: 0.0})), 

... LabeledPoint(1.0, SparseVector(2, {1: 2.0})) 

... ] 

>>> svm = SVMWithSGD.train(sc.parallelize(sparse_data), iterations=10) 

>>> svm.predict(SparseVector(2, {1: 1.0})) 

1 

>>> svm.predict(SparseVector(2, {0: -1.0})) 

0 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> svm.save(sc, path) 

>>> sameModel = SVMModel.load(sc, path) 

>>> sameModel.predict(SparseVector(2, {1: 1.0})) 

1 

>>> sameModel.predict(SparseVector(2, {0: -1.0})) 

0 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except: 

... pass 

""" 

def __init__(self, weights, intercept): 

super(SVMModel, self).__init__(weights, intercept) 

self._threshold = 0.0 

 

@since('0.9.0') 

def predict(self, x): 

""" 

Predict values for a single data point or an RDD of points 

using the model trained. 

""" 

if isinstance(x, RDD): 

return x.map(lambda v: self.predict(v)) 

 

x = _convert_to_vector(x) 

margin = self.weights.dot(x) + self.intercept 

if self._threshold is None: 

return margin 

else: 

return 1 if margin > self._threshold else 0 

 

@since('1.4.0') 

def save(self, sc, path): 

""" 

Save this model to the given path. 

""" 

java_model = sc._jvm.org.apache.spark.mllib.classification.SVMModel( 

_py2java(sc, self._coeff), self.intercept) 

java_model.save(sc._jsc.sc(), path) 

 

@classmethod 

@since('1.4.0') 

def load(cls, sc, path): 

""" 

Load a model from the given path. 

""" 

java_model = sc._jvm.org.apache.spark.mllib.classification.SVMModel.load( 

sc._jsc.sc(), path) 

weights = _java2py(sc, java_model.weights()) 

intercept = java_model.intercept() 

threshold = java_model.getThreshold().get() 

model = SVMModel(weights, intercept) 

model.setThreshold(threshold) 

return model 

 

 

class SVMWithSGD(object): 

""" 

Train a Support Vector Machine (SVM) using Stochastic Gradient Descent. 

 

.. versionadded:: 0.9.0 

""" 

 

@classmethod 

def train(cls, data, iterations=100, step=1.0, regParam=0.01, 

miniBatchFraction=1.0, initialWeights=None, regType="l2", 

intercept=False, validateData=True, convergenceTol=0.001): 

""" 

Train a support vector machine on the given data. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`. 

iterations : int, optional 

The number of iterations. 

(default: 100) 

step : float, optional 

The step parameter used in SGD. 

(default: 1.0) 

regParam : float, optional 

The regularizer parameter. 

(default: 0.01) 

miniBatchFraction : float, optional 

Fraction of data to be used for each SGD iteration. 

(default: 1.0) 

initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional 

The initial weights. 

(default: None) 

regType : str, optional 

The type of regularizer used for training our model. 

Allowed values: 

 

- "l1" for using L1 regularization 

- "l2" for using L2 regularization (default) 

- None for no regularization 

 

intercept : bool, optional 

Boolean parameter which indicates the use or not of the 

augmented representation for training data (i.e. whether bias 

features are activated or not). 

(default: False) 

validateData : bool, optional 

Boolean parameter which indicates if the algorithm should 

validate data before training. 

(default: True) 

convergenceTol : float, optional 

A condition which decides iteration termination. 

(default: 0.001) 

""" 

def train(rdd, i): 

return callMLlibFunc("trainSVMModelWithSGD", rdd, int(iterations), float(step), 

float(regParam), float(miniBatchFraction), i, regType, 

bool(intercept), bool(validateData), float(convergenceTol)) 

 

return _regression_train_wrapper(train, SVMModel, data, initialWeights) 

 

 

@inherit_doc 

class NaiveBayesModel(Saveable, Loader): 

 

""" 

Model for Naive Bayes classifiers. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

labels : :py:class:`numpy.ndarray` 

List of labels. 

pi : :py:class:`numpy.ndarray` 

Log of class priors, whose dimension is C, number of labels. 

theta : :py:class:`numpy.ndarray` 

Log of class conditional probabilities, whose dimension is C-by-D, 

where D is number of features. 

 

Examples 

-------- 

>>> from pyspark.mllib.linalg import SparseVector 

>>> data = [ 

... LabeledPoint(0.0, [0.0, 0.0]), 

... LabeledPoint(0.0, [0.0, 1.0]), 

... LabeledPoint(1.0, [1.0, 0.0]), 

... ] 

>>> model = NaiveBayes.train(sc.parallelize(data)) 

>>> model.predict(numpy.array([0.0, 1.0])) 

0.0 

>>> model.predict(numpy.array([1.0, 0.0])) 

1.0 

>>> model.predict(sc.parallelize([[1.0, 0.0]])).collect() 

[1.0] 

>>> sparse_data = [ 

... LabeledPoint(0.0, SparseVector(2, {1: 0.0})), 

... LabeledPoint(0.0, SparseVector(2, {1: 1.0})), 

... LabeledPoint(1.0, SparseVector(2, {0: 1.0})) 

... ] 

>>> model = NaiveBayes.train(sc.parallelize(sparse_data)) 

>>> model.predict(SparseVector(2, {1: 1.0})) 

0.0 

>>> model.predict(SparseVector(2, {0: 1.0})) 

1.0 

>>> import os, tempfile 

>>> path = tempfile.mkdtemp() 

>>> model.save(sc, path) 

>>> sameModel = NaiveBayesModel.load(sc, path) 

>>> sameModel.predict(SparseVector(2, {0: 1.0})) == model.predict(SparseVector(2, {0: 1.0})) 

True 

>>> from shutil import rmtree 

>>> try: 

... rmtree(path) 

... except OSError: 

... pass 

""" 

def __init__(self, labels, pi, theta): 

self.labels = labels 

self.pi = pi 

self.theta = theta 

 

@since('0.9.0') 

def predict(self, x): 

""" 

Return the most likely class for a data vector 

or an RDD of vectors 

""" 

if isinstance(x, RDD): 

return x.map(lambda v: self.predict(v)) 

x = _convert_to_vector(x) 

return self.labels[numpy.argmax(self.pi + x.dot(self.theta.transpose()))] 

 

def save(self, sc, path): 

""" 

Save this model to the given path. 

""" 

java_labels = _py2java(sc, self.labels.tolist()) 

java_pi = _py2java(sc, self.pi.tolist()) 

java_theta = _py2java(sc, self.theta.tolist()) 

java_model = sc._jvm.org.apache.spark.mllib.classification.NaiveBayesModel( 

java_labels, java_pi, java_theta) 

java_model.save(sc._jsc.sc(), path) 

 

@classmethod 

@since('1.4.0') 

def load(cls, sc, path): 

""" 

Load a model from the given path. 

""" 

java_model = sc._jvm.org.apache.spark.mllib.classification.NaiveBayesModel.load( 

sc._jsc.sc(), path) 

# Can not unpickle array.array from Pyrolite in Python3 with "bytes" 

py_labels = _java2py(sc, java_model.labels(), "latin1") 

py_pi = _java2py(sc, java_model.pi(), "latin1") 

py_theta = _java2py(sc, java_model.theta(), "latin1") 

return NaiveBayesModel(py_labels, py_pi, numpy.array(py_theta)) 

 

 

class NaiveBayes(object): 

""" 

Train a Multinomial Naive Bayes model. 

 

.. versionadded:: 0.9.0 

""" 

 

@classmethod 

def train(cls, data, lambda_=1.0): 

""" 

Train a Naive Bayes model given an RDD of (label, features) 

vectors. 

 

This is the `Multinomial NB <http://tinyurl.com/lsdw6p>`_ which 

can handle all kinds of discrete data. For example, by 

converting documents into TF-IDF vectors, it can be used for 

document classification. By making every vector a 0-1 vector, 

it can also be used as `Bernoulli NB <http://tinyurl.com/p7c96j6>`_. 

The input feature values must be nonnegative. 

 

.. versionadded:: 0.9.0 

 

Parameters 

---------- 

data : :py:class:`pyspark.RDD` 

The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`. 

lambda\\_ : float, optional 

The smoothing parameter. 

(default: 1.0) 

""" 

first = data.first() 

718 ↛ 719line 718 didn't jump to line 719, because the condition on line 718 was never true if not isinstance(first, LabeledPoint): 

raise ValueError("`data` should be an RDD of LabeledPoint") 

labels, pi, theta = callMLlibFunc("trainNaiveBayesModel", data, lambda_) 

return NaiveBayesModel(labels.toArray(), pi.toArray(), numpy.array(theta)) 

 

 

@inherit_doc 

class StreamingLogisticRegressionWithSGD(StreamingLinearAlgorithm): 

""" 

Train or predict a logistic regression model on streaming data. 

Training uses Stochastic Gradient Descent to update the model based on 

each new batch of incoming data from a DStream. 

 

Each batch of data is assumed to be an RDD of LabeledPoints. 

The number of data points per batch can vary, but the number 

of features must be constant. An initial weight 

vector must be provided. 

 

.. versionadded:: 1.5.0 

 

Parameters 

---------- 

stepSize : float, optional 

Step size for each iteration of gradient descent. 

(default: 0.1) 

numIterations : int, optional 

Number of iterations run for each batch of data. 

(default: 50) 

miniBatchFraction : float, optional 

Fraction of each batch of data to use for updates. 

(default: 1.0) 

regParam : float, optional 

L2 Regularization parameter. 

(default: 0.0) 

convergenceTol : float, optional 

Value used to determine when to terminate iterations. 

(default: 0.001) 

""" 

def __init__(self, stepSize=0.1, numIterations=50, miniBatchFraction=1.0, regParam=0.0, 

convergenceTol=0.001): 

self.stepSize = stepSize 

self.numIterations = numIterations 

self.regParam = regParam 

self.miniBatchFraction = miniBatchFraction 

self.convergenceTol = convergenceTol 

self._model = None 

super(StreamingLogisticRegressionWithSGD, self).__init__( 

model=self._model) 

 

@since('1.5.0') 

def setInitialWeights(self, initialWeights): 

""" 

Set the initial value of weights. 

 

This must be set before running trainOn and predictOn. 

""" 

initialWeights = _convert_to_vector(initialWeights) 

 

# LogisticRegressionWithSGD does only binary classification. 

self._model = LogisticRegressionModel( 

initialWeights, 0, initialWeights.size, 2) 

return self 

 

@since('1.5.0') 

def trainOn(self, dstream): 

"""Train the model on the incoming dstream.""" 

self._validate(dstream) 

 

def update(rdd): 

# LogisticRegressionWithSGD.train raises an error for an empty RDD. 

if not rdd.isEmpty(): 

self._model = LogisticRegressionWithSGD.train( 

rdd, self.numIterations, self.stepSize, 

self.miniBatchFraction, self._model.weights, 

regParam=self.regParam, convergenceTol=self.convergenceTol) 

 

dstream.foreachRDD(update) 

 

 

def _test(): 

import doctest 

from pyspark.sql import SparkSession 

import pyspark.mllib.classification 

globs = pyspark.mllib.classification.__dict__.copy() 

spark = SparkSession.builder\ 

.master("local[4]")\ 

.appName("mllib.classification tests")\ 

.getOrCreate() 

globs['sc'] = spark.sparkContext 

(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

spark.stop() 

809 ↛ 810line 809 didn't jump to line 810, because the condition on line 809 was never true if failure_count: 

sys.exit(-1) 

 

if __name__ == "__main__": 

_test()