Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import os 

import sys 

import itertools 

import random 

import math 

from multiprocessing.pool import ThreadPool 

 

import numpy as np 

 

from pyspark import keyword_only, since, SparkContext, inheritable_thread_target 

from pyspark.ml import Estimator, Transformer, Model 

from pyspark.ml.common import inherit_doc, _py2java, _java2py 

from pyspark.ml.evaluation import Evaluator 

from pyspark.ml.param import Params, Param, TypeConverters 

from pyspark.ml.param.shared import HasCollectSubModels, HasParallelism, HasSeed 

from pyspark.ml.util import DefaultParamsReader, DefaultParamsWriter, MetaAlgorithmReadWrite, \ 

MLReadable, MLReader, MLWritable, MLWriter, JavaMLReader, JavaMLWriter 

from pyspark.ml.wrapper import JavaParams, JavaEstimator, JavaWrapper 

from pyspark.sql.functions import col, lit, rand, UserDefinedFunction 

from pyspark.sql.types import BooleanType 

 

__all__ = ['ParamGridBuilder', 'CrossValidator', 'CrossValidatorModel', 'TrainValidationSplit', 

'TrainValidationSplitModel', 'ParamRandomBuilder'] 

 

 

def _parallelFitTasks(est, train, eva, validation, epm, collectSubModel): 

""" 

Creates a list of callables which can be called from different threads to fit and evaluate 

an estimator in parallel. Each callable returns an `(index, metric)` pair. 

 

Parameters 

---------- 

est : :py:class:`pyspark.ml.baseEstimator` 

he estimator to be fit. 

train : :py:class:`pyspark.sql.DataFrame` 

DataFrame, training data set, used for fitting. 

eva : :py:class:`pyspark.ml.evaluation.Evaluator` 

used to compute `metric` 

validation : :py:class:`pyspark.sql.DataFrame` 

DataFrame, validation data set, used for evaluation. 

epm : :py:class:`collections.abc.Sequence` 

Sequence of ParamMap, params maps to be used during fitting & evaluation. 

collectSubModel : bool 

Whether to collect sub model. 

 

Returns 

------- 

tuple 

(int, float, subModel), an index into `epm` and the associated metric value. 

""" 

modelIter = est.fitMultiple(train, epm) 

 

def singleTask(): 

index, model = next(modelIter) 

# TODO: duplicate evaluator to take extra params from input 

# Note: Supporting tuning params in evaluator need update method 

# `MetaAlgorithmReadWrite.getAllNestedStages`, make it return 

# all nested stages and evaluators 

metric = eva.evaluate(model.transform(validation, epm[index])) 

return index, metric, model if collectSubModel else None 

 

return [singleTask] * len(epm) 

 

 

class ParamGridBuilder(object): 

r""" 

Builder for a param grid used in grid search-based model selection. 

 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> from pyspark.ml.classification import LogisticRegression 

>>> lr = LogisticRegression() 

>>> output = ParamGridBuilder() \ 

... .baseOn({lr.labelCol: 'l'}) \ 

... .baseOn([lr.predictionCol, 'p']) \ 

... .addGrid(lr.regParam, [1.0, 2.0]) \ 

... .addGrid(lr.maxIter, [1, 5]) \ 

... .build() 

>>> expected = [ 

... {lr.regParam: 1.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, 

... {lr.regParam: 2.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, 

... {lr.regParam: 1.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}, 

... {lr.regParam: 2.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}] 

>>> len(output) == len(expected) 

True 

>>> all([m in expected for m in output]) 

True 

""" 

 

def __init__(self): 

self._param_grid = {} 

 

@since("1.4.0") 

def addGrid(self, param, values): 

""" 

Sets the given parameters in this grid to fixed values. 

 

param must be an instance of Param associated with an instance of Params 

(such as Estimator or Transformer). 

""" 

if isinstance(param, Param): 

self._param_grid[param] = values 

else: 

raise TypeError("param must be an instance of Param") 

 

return self 

 

@since("1.4.0") 

def baseOn(self, *args): 

""" 

Sets the given parameters in this grid to fixed values. 

Accepts either a parameter dictionary or a list of (parameter, value) pairs. 

""" 

if isinstance(args[0], dict): 

self.baseOn(*args[0].items()) 

else: 

for (param, value) in args: 

self.addGrid(param, [value]) 

 

return self 

 

@since("1.4.0") 

def build(self): 

""" 

Builds and returns all combinations of parameters specified 

by the param grid. 

""" 

keys = self._param_grid.keys() 

grid_values = self._param_grid.values() 

 

def to_key_value_pairs(keys, values): 

return [(key, key.typeConverter(value)) for key, value in zip(keys, values)] 

 

return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)] 

 

 

class ParamRandomBuilder(ParamGridBuilder): 

r""" 

Builder for random value parameters used in search-based model selection. 

 

 

.. versionadded:: 3.2.0 

""" 

 

@since("3.2.0") 

def addRandom(self, param, x, y, n): 

""" 

Adds n random values between x and y. 

The arguments x and y can be integers, floats or a combination of the two. If either 

x or y is a float, the domain of the random value will be float. 

""" 

if type(x) == int and type(y) == int: 

values = map(lambda _: random.randrange(x, y), range(n)) 

elif type(x) == float or type(y) == float: 

values = map(lambda _: random.uniform(x, y), range(n)) 

else: 

raise TypeError("unable to make range for types %s and %s" % type(x) % type(y)) 

self.addGrid(param, values) 

return self 

 

@since("3.2.0") 

def addLog10Random(self, param, x, y, n): 

""" 

Adds n random values scaled logarithmically (base 10) between x and y. 

For instance, a distribution for x=1.0, y=10000.0 and n=5 might reasonably look like 

[1.6, 65.3, 221.9, 1024.3, 8997.5] 

""" 

def logarithmic_random(): 

rand = random.uniform(math.log10(x), math.log10(y)) 

value = 10 ** rand 

if type(x) == int and type(y) == int: 

value = int(value) 

return value 

 

values = map(lambda _: logarithmic_random(), range(n)) 

self.addGrid(param, values) 

 

return self 

 

 

class _ValidatorParams(HasSeed): 

""" 

Common params for TrainValidationSplit and CrossValidator. 

""" 

 

estimator = Param(Params._dummy(), "estimator", "estimator to be cross-validated") 

estimatorParamMaps = Param(Params._dummy(), "estimatorParamMaps", "estimator param maps") 

evaluator = Param( 

Params._dummy(), "evaluator", 

"evaluator used to select hyper-parameters that maximize the validator metric") 

 

@since("2.0.0") 

def getEstimator(self): 

""" 

Gets the value of estimator or its default value. 

""" 

return self.getOrDefault(self.estimator) 

 

@since("2.0.0") 

def getEstimatorParamMaps(self): 

""" 

Gets the value of estimatorParamMaps or its default value. 

""" 

return self.getOrDefault(self.estimatorParamMaps) 

 

@since("2.0.0") 

def getEvaluator(self): 

""" 

Gets the value of evaluator or its default value. 

""" 

return self.getOrDefault(self.evaluator) 

 

@classmethod 

def _from_java_impl(cls, java_stage): 

""" 

Return Python estimator, estimatorParamMaps, and evaluator from a Java ValidatorParams. 

""" 

 

# Load information from java_stage to the instance. 

estimator = JavaParams._from_java(java_stage.getEstimator()) 

evaluator = JavaParams._from_java(java_stage.getEvaluator()) 

if isinstance(estimator, JavaEstimator): 

epms = [estimator._transfer_param_map_from_java(epm) 

for epm in java_stage.getEstimatorParamMaps()] 

245 ↛ 250line 245 didn't jump to line 250, because the condition on line 245 was never false elif MetaAlgorithmReadWrite.isMetaEstimator(estimator): 

# Meta estimator such as Pipeline, OneVsRest 

epms = _ValidatorSharedReadWrite.meta_estimator_transfer_param_maps_from_java( 

estimator, java_stage.getEstimatorParamMaps()) 

else: 

raise ValueError('Unsupported estimator used in tuning: ' + str(estimator)) 

 

return estimator, epms, evaluator 

 

def _to_java_impl(self): 

""" 

Return Java estimator, estimatorParamMaps, and evaluator from this Python instance. 

""" 

 

gateway = SparkContext._gateway 

cls = SparkContext._jvm.org.apache.spark.ml.param.ParamMap 

 

estimator = self.getEstimator() 

if isinstance(estimator, JavaEstimator): 

java_epms = gateway.new_array(cls, len(self.getEstimatorParamMaps())) 

for idx, epm in enumerate(self.getEstimatorParamMaps()): 

java_epms[idx] = self.getEstimator()._transfer_param_map_to_java(epm) 

267 ↛ 272line 267 didn't jump to line 272, because the condition on line 267 was never false elif MetaAlgorithmReadWrite.isMetaEstimator(estimator): 

# Meta estimator such as Pipeline, OneVsRest 

java_epms = _ValidatorSharedReadWrite.meta_estimator_transfer_param_maps_to_java( 

estimator, self.getEstimatorParamMaps()) 

else: 

raise ValueError('Unsupported estimator used in tuning: ' + str(estimator)) 

 

java_estimator = self.getEstimator()._to_java() 

java_evaluator = self.getEvaluator()._to_java() 

return java_estimator, java_epms, java_evaluator 

 

 

class _ValidatorSharedReadWrite: 

 

@staticmethod 

def meta_estimator_transfer_param_maps_to_java(pyEstimator, pyParamMaps): 

pyStages = MetaAlgorithmReadWrite.getAllNestedStages(pyEstimator) 

stagePairs = list(map(lambda stage: (stage, stage._to_java()), pyStages)) 

sc = SparkContext._active_spark_context 

 

paramMapCls = SparkContext._jvm.org.apache.spark.ml.param.ParamMap 

javaParamMaps = SparkContext._gateway.new_array(paramMapCls, len(pyParamMaps)) 

 

for idx, pyParamMap in enumerate(pyParamMaps): 

javaParamMap = JavaWrapper._new_java_obj("org.apache.spark.ml.param.ParamMap") 

for pyParam, pyValue in pyParamMap.items(): 

javaParam = None 

294 ↛ 298line 294 didn't jump to line 298, because the loop on line 294 didn't complete for pyStage, javaStage in stagePairs: 

if pyStage._testOwnParam(pyParam.parent, pyParam.name): 

javaParam = javaStage.getParam(pyParam.name) 

break 

298 ↛ 299line 298 didn't jump to line 299, because the condition on line 298 was never true if javaParam is None: 

raise ValueError('Resolve param in estimatorParamMaps failed: ' + str(pyParam)) 

if isinstance(pyValue, Params) and hasattr(pyValue, "_to_java"): 

javaValue = pyValue._to_java() 

else: 

javaValue = _py2java(sc, pyValue) 

pair = javaParam.w(javaValue) 

javaParamMap.put([pair]) 

javaParamMaps[idx] = javaParamMap 

return javaParamMaps 

 

@staticmethod 

def meta_estimator_transfer_param_maps_from_java(pyEstimator, javaParamMaps): 

pyStages = MetaAlgorithmReadWrite.getAllNestedStages(pyEstimator) 

stagePairs = list(map(lambda stage: (stage, stage._to_java()), pyStages)) 

sc = SparkContext._active_spark_context 

pyParamMaps = [] 

for javaParamMap in javaParamMaps: 

pyParamMap = dict() 

for javaPair in javaParamMap.toList(): 

javaParam = javaPair.param() 

pyParam = None 

for pyStage, javaStage in stagePairs: 

if pyStage._testOwnParam(javaParam.parent(), javaParam.name()): 

pyParam = pyStage.getParam(javaParam.name()) 

323 ↛ 324line 323 didn't jump to line 324, because the condition on line 323 was never true if pyParam is None: 

raise ValueError('Resolve param in estimatorParamMaps failed: ' + 

javaParam.parent() + '.' + javaParam.name()) 

javaValue = javaPair.value() 

if sc._jvm.Class.forName("org.apache.spark.ml.util.DefaultParamsWritable") \ 

.isInstance(javaValue): 

pyValue = JavaParams._from_java(javaValue) 

else: 

pyValue = _java2py(sc, javaValue) 

pyParamMap[pyParam] = pyValue 

pyParamMaps.append(pyParamMap) 

return pyParamMaps 

 

@staticmethod 

def is_java_convertible(instance): 

allNestedStages = MetaAlgorithmReadWrite.getAllNestedStages(instance.getEstimator()) 

evaluator_convertible = isinstance(instance.getEvaluator(), JavaParams) 

estimator_convertible = all(map(lambda stage: hasattr(stage, '_to_java'), allNestedStages)) 

return estimator_convertible and evaluator_convertible 

 

@staticmethod 

def saveImpl(path, instance, sc, extraMetadata=None): 

numParamsNotJson = 0 

jsonEstimatorParamMaps = [] 

for paramMap in instance.getEstimatorParamMaps(): 

jsonParamMap = [] 

for p, v in paramMap.items(): 

jsonParam = {'parent': p.parent, 'name': p.name} 

if (isinstance(v, Estimator) and not MetaAlgorithmReadWrite.isMetaEstimator(v)) \ 

or isinstance(v, Transformer) or isinstance(v, Evaluator): 

relative_path = f'epm_{p.name}{numParamsNotJson}' 

param_path = os.path.join(path, relative_path) 

numParamsNotJson += 1 

v.save(param_path) 

jsonParam['value'] = relative_path 

jsonParam['isJson'] = False 

359 ↛ 360line 359 didn't jump to line 360, because the condition on line 359 was never true elif isinstance(v, MLWritable): 

raise RuntimeError( 

"ValidatorSharedReadWrite.saveImpl does not handle parameters of type: " 

"MLWritable that are not Estimaor/Evaluator/Transformer, and if parameter " 

"is estimator, it cannot be meta estimator such as Validator or OneVsRest") 

else: 

jsonParam['value'] = v 

jsonParam['isJson'] = True 

jsonParamMap.append(jsonParam) 

jsonEstimatorParamMaps.append(jsonParamMap) 

 

skipParams = ['estimator', 'evaluator', 'estimatorParamMaps'] 

jsonParams = DefaultParamsWriter.extractJsonParams(instance, skipParams) 

jsonParams['estimatorParamMaps'] = jsonEstimatorParamMaps 

 

DefaultParamsWriter.saveMetadata(instance, path, sc, extraMetadata, jsonParams) 

evaluatorPath = os.path.join(path, 'evaluator') 

instance.getEvaluator().save(evaluatorPath) 

estimatorPath = os.path.join(path, 'estimator') 

instance.getEstimator().save(estimatorPath) 

 

@staticmethod 

def load(path, sc, metadata): 

evaluatorPath = os.path.join(path, 'evaluator') 

evaluator = DefaultParamsReader.loadParamsInstance(evaluatorPath, sc) 

estimatorPath = os.path.join(path, 'estimator') 

estimator = DefaultParamsReader.loadParamsInstance(estimatorPath, sc) 

 

uidToParams = MetaAlgorithmReadWrite.getUidMap(estimator) 

uidToParams[evaluator.uid] = evaluator 

 

jsonEstimatorParamMaps = metadata['paramMap']['estimatorParamMaps'] 

 

estimatorParamMaps = [] 

for jsonParamMap in jsonEstimatorParamMaps: 

paramMap = {} 

for jsonParam in jsonParamMap: 

est = uidToParams[jsonParam['parent']] 

param = getattr(est, jsonParam['name']) 

if 'isJson' not in jsonParam or ('isJson' in jsonParam and jsonParam['isJson']): 

value = jsonParam['value'] 

else: 

relativePath = jsonParam['value'] 

valueSavedPath = os.path.join(path, relativePath) 

value = DefaultParamsReader.loadParamsInstance(valueSavedPath, sc) 

paramMap[param] = value 

estimatorParamMaps.append(paramMap) 

 

return metadata, estimator, evaluator, estimatorParamMaps 

 

@staticmethod 

def validateParams(instance): 

estiamtor = instance.getEstimator() 

evaluator = instance.getEvaluator() 

uidMap = MetaAlgorithmReadWrite.getUidMap(estiamtor) 

 

for elem in [evaluator] + list(uidMap.values()): 

416 ↛ 417line 416 didn't jump to line 417, because the condition on line 416 was never true if not isinstance(elem, MLWritable): 

raise ValueError(f'Validator write will fail because it contains {elem.uid} ' 

f'which is not writable.') 

 

estimatorParamMaps = instance.getEstimatorParamMaps() 

paramErr = 'Validator save requires all Params in estimatorParamMaps to apply to ' \ 

f'its Estimator, An extraneous Param was found: ' 

for paramMap in estimatorParamMaps: 

for param in paramMap: 

425 ↛ 426line 425 didn't jump to line 426, because the condition on line 425 was never true if param.parent not in uidMap: 

raise ValueError(paramErr + repr(param)) 

 

@staticmethod 

def getValidatorModelWriterPersistSubModelsParam(writer): 

430 ↛ 431line 430 didn't jump to line 431, because the condition on line 430 was never true if 'persistsubmodels' in writer.optionMap: 

persistSubModelsParam = writer.optionMap['persistsubmodels'].lower() 

if persistSubModelsParam == 'true': 

return True 

elif persistSubModelsParam == 'false': 

return False 

else: 

raise ValueError( 

f'persistSubModels option value {persistSubModelsParam} is invalid, ' 

f"the possible values are True, 'True' or False, 'False'") 

else: 

return writer.instance.subModels is not None 

 

 

_save_with_persist_submodels_no_submodels_found_err = \ 

'When persisting tuning models, you can only set persistSubModels to true if the tuning ' \ 

'was done with collectSubModels set to true. To save the sub-models, try rerunning fitting ' \ 

'with collectSubModels set to true.' 

 

 

@inherit_doc 

class CrossValidatorReader(MLReader): 

 

def __init__(self, cls): 

super(CrossValidatorReader, self).__init__() 

self.cls = cls 

 

def load(self, path): 

metadata = DefaultParamsReader.loadMetadata(path, self.sc) 

if not DefaultParamsReader.isPythonParamsInstance(metadata): 

return JavaMLReader(self.cls).load(path) 

else: 

metadata, estimator, evaluator, estimatorParamMaps = \ 

_ValidatorSharedReadWrite.load(path, self.sc, metadata) 

cv = CrossValidator(estimator=estimator, 

estimatorParamMaps=estimatorParamMaps, 

evaluator=evaluator) 

cv = cv._resetUid(metadata['uid']) 

DefaultParamsReader.getAndSetParams(cv, metadata, skipParams=['estimatorParamMaps']) 

return cv 

 

 

@inherit_doc 

class CrossValidatorWriter(MLWriter): 

 

def __init__(self, instance): 

super(CrossValidatorWriter, self).__init__() 

self.instance = instance 

 

def saveImpl(self, path): 

_ValidatorSharedReadWrite.validateParams(self.instance) 

_ValidatorSharedReadWrite.saveImpl(path, self.instance, self.sc) 

 

 

@inherit_doc 

class CrossValidatorModelReader(MLReader): 

 

def __init__(self, cls): 

super(CrossValidatorModelReader, self).__init__() 

self.cls = cls 

 

def load(self, path): 

metadata = DefaultParamsReader.loadMetadata(path, self.sc) 

if not DefaultParamsReader.isPythonParamsInstance(metadata): 

return JavaMLReader(self.cls).load(path) 

else: 

metadata, estimator, evaluator, estimatorParamMaps = \ 

_ValidatorSharedReadWrite.load(path, self.sc, metadata) 

numFolds = metadata['paramMap']['numFolds'] 

bestModelPath = os.path.join(path, 'bestModel') 

bestModel = DefaultParamsReader.loadParamsInstance(bestModelPath, self.sc) 

avgMetrics = metadata['avgMetrics'] 

persistSubModels = ('persistSubModels' in metadata) and metadata['persistSubModels'] 

 

if persistSubModels: 

subModels = [[None] * len(estimatorParamMaps)] * numFolds 

for splitIndex in range(numFolds): 

for paramIndex in range(len(estimatorParamMaps)): 

modelPath = os.path.join( 

path, 'subModels', f'fold{splitIndex}', f'{paramIndex}') 

subModels[splitIndex][paramIndex] = \ 

DefaultParamsReader.loadParamsInstance(modelPath, self.sc) 

else: 

subModels = None 

 

cvModel = CrossValidatorModel(bestModel, avgMetrics=avgMetrics, subModels=subModels) 

cvModel = cvModel._resetUid(metadata['uid']) 

cvModel.set(cvModel.estimator, estimator) 

cvModel.set(cvModel.estimatorParamMaps, estimatorParamMaps) 

cvModel.set(cvModel.evaluator, evaluator) 

DefaultParamsReader.getAndSetParams( 

cvModel, metadata, skipParams=['estimatorParamMaps']) 

return cvModel 

 

 

@inherit_doc 

class CrossValidatorModelWriter(MLWriter): 

 

def __init__(self, instance): 

super(CrossValidatorModelWriter, self).__init__() 

self.instance = instance 

 

def saveImpl(self, path): 

_ValidatorSharedReadWrite.validateParams(self.instance) 

instance = self.instance 

persistSubModels = _ValidatorSharedReadWrite \ 

.getValidatorModelWriterPersistSubModelsParam(self) 

extraMetadata = {'avgMetrics': instance.avgMetrics, 

'persistSubModels': persistSubModels} 

_ValidatorSharedReadWrite.saveImpl(path, instance, self.sc, extraMetadata=extraMetadata) 

bestModelPath = os.path.join(path, 'bestModel') 

instance.bestModel.save(bestModelPath) 

if persistSubModels: 

543 ↛ 544line 543 didn't jump to line 544, because the condition on line 543 was never true if instance.subModels is None: 

raise ValueError(_save_with_persist_submodels_no_submodels_found_err) 

subModelsPath = os.path.join(path, 'subModels') 

for splitIndex in range(instance.getNumFolds()): 

splitPath = os.path.join(subModelsPath, f'fold{splitIndex}') 

for paramIndex in range(len(instance.getEstimatorParamMaps())): 

modelPath = os.path.join(splitPath, f'{paramIndex}') 

instance.subModels[splitIndex][paramIndex].save(modelPath) 

 

 

class _CrossValidatorParams(_ValidatorParams): 

""" 

Params for :py:class:`CrossValidator` and :py:class:`CrossValidatorModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

numFolds = Param(Params._dummy(), "numFolds", "number of folds for cross validation", 

typeConverter=TypeConverters.toInt) 

 

foldCol = Param(Params._dummy(), "foldCol", "Param for the column name of user " + 

"specified fold number. Once this is specified, :py:class:`CrossValidator` " + 

"won't do random k-fold split. Note that this column should be integer type " + 

"with range [0, numFolds) and Spark will throw exception on out-of-range " + 

"fold numbers.", typeConverter=TypeConverters.toString) 

 

def __init__(self, *args): 

super(_CrossValidatorParams, self).__init__(*args) 

self._setDefault(numFolds=3, foldCol="") 

 

@since("1.4.0") 

def getNumFolds(self): 

""" 

Gets the value of numFolds or its default value. 

""" 

return self.getOrDefault(self.numFolds) 

 

@since("3.1.0") 

def getFoldCol(self): 

""" 

Gets the value of foldCol or its default value. 

""" 

return self.getOrDefault(self.foldCol) 

 

 

class CrossValidator(Estimator, _CrossValidatorParams, HasParallelism, HasCollectSubModels, 

MLReadable, MLWritable): 

""" 

 

K-fold cross validation performs model selection by splitting the dataset into a set of 

non-overlapping randomly partitioned folds which are used as separate training and test datasets 

e.g., with k=3 folds, K-fold cross validation will generate 3 (training, test) dataset pairs, 

each of which uses 2/3 of the data for training and 1/3 for testing. Each fold is used as the 

test set exactly once. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> from pyspark.ml.classification import LogisticRegression 

>>> from pyspark.ml.evaluation import BinaryClassificationEvaluator 

>>> from pyspark.ml.linalg import Vectors 

>>> from pyspark.ml.tuning import CrossValidator, ParamGridBuilder, CrossValidatorModel 

>>> import tempfile 

>>> dataset = spark.createDataFrame( 

... [(Vectors.dense([0.0]), 0.0), 

... (Vectors.dense([0.4]), 1.0), 

... (Vectors.dense([0.5]), 0.0), 

... (Vectors.dense([0.6]), 1.0), 

... (Vectors.dense([1.0]), 1.0)] * 10, 

... ["features", "label"]) 

>>> lr = LogisticRegression() 

>>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() 

>>> evaluator = BinaryClassificationEvaluator() 

>>> cv = CrossValidator(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator, 

... parallelism=2) 

>>> cvModel = cv.fit(dataset) 

>>> cvModel.getNumFolds() 

3 

>>> cvModel.avgMetrics[0] 

0.5 

>>> path = tempfile.mkdtemp() 

>>> model_path = path + "/model" 

>>> cvModel.write().save(model_path) 

>>> cvModelRead = CrossValidatorModel.read().load(model_path) 

>>> cvModelRead.avgMetrics 

[0.5, ... 

>>> evaluator.evaluate(cvModel.transform(dataset)) 

0.8333... 

>>> evaluator.evaluate(cvModelRead.transform(dataset)) 

0.8333... 

""" 

 

@keyword_only 

def __init__(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3, 

seed=None, parallelism=1, collectSubModels=False, foldCol=""): 

""" 

__init__(self, \\*, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3,\ 

seed=None, parallelism=1, collectSubModels=False, foldCol="") 

""" 

super(CrossValidator, self).__init__() 

self._setDefault(parallelism=1) 

kwargs = self._input_kwargs 

self._set(**kwargs) 

 

@keyword_only 

@since("1.4.0") 

def setParams(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3, 

seed=None, parallelism=1, collectSubModels=False, foldCol=""): 

""" 

setParams(self, \\*, estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3,\ 

seed=None, parallelism=1, collectSubModels=False, foldCol=""): 

Sets params for cross validator. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

@since("2.0.0") 

def setEstimator(self, value): 

""" 

Sets the value of :py:attr:`estimator`. 

""" 

return self._set(estimator=value) 

 

@since("2.0.0") 

def setEstimatorParamMaps(self, value): 

""" 

Sets the value of :py:attr:`estimatorParamMaps`. 

""" 

return self._set(estimatorParamMaps=value) 

 

@since("2.0.0") 

def setEvaluator(self, value): 

""" 

Sets the value of :py:attr:`evaluator`. 

""" 

return self._set(evaluator=value) 

 

@since("1.4.0") 

def setNumFolds(self, value): 

""" 

Sets the value of :py:attr:`numFolds`. 

""" 

return self._set(numFolds=value) 

 

@since("3.1.0") 

def setFoldCol(self, value): 

""" 

Sets the value of :py:attr:`foldCol`. 

""" 

return self._set(foldCol=value) 

 

def setSeed(self, value): 

""" 

Sets the value of :py:attr:`seed`. 

""" 

return self._set(seed=value) 

 

def setParallelism(self, value): 

""" 

Sets the value of :py:attr:`parallelism`. 

""" 

return self._set(parallelism=value) 

 

def setCollectSubModels(self, value): 

""" 

Sets the value of :py:attr:`collectSubModels`. 

""" 

return self._set(collectSubModels=value) 

 

def _fit(self, dataset): 

est = self.getOrDefault(self.estimator) 

epm = self.getOrDefault(self.estimatorParamMaps) 

numModels = len(epm) 

eva = self.getOrDefault(self.evaluator) 

nFolds = self.getOrDefault(self.numFolds) 

metrics = [0.0] * numModels 

 

pool = ThreadPool(processes=min(self.getParallelism(), numModels)) 

subModels = None 

collectSubModelsParam = self.getCollectSubModels() 

if collectSubModelsParam: 

subModels = [[None for j in range(numModels)] for i in range(nFolds)] 

 

datasets = self._kFold(dataset) 

for i in range(nFolds): 

validation = datasets[i][1].cache() 

train = datasets[i][0].cache() 

 

tasks = map( 

inheritable_thread_target, 

_parallelFitTasks(est, train, eva, validation, epm, collectSubModelsParam)) 

for j, metric, subModel in pool.imap_unordered(lambda f: f(), tasks): 

metrics[j] += (metric / nFolds) 

if collectSubModelsParam: 

subModels[i][j] = subModel 

 

validation.unpersist() 

train.unpersist() 

 

if eva.isLargerBetter(): 

bestIndex = np.argmax(metrics) 

else: 

bestIndex = np.argmin(metrics) 

bestModel = est.fit(dataset, epm[bestIndex]) 

return self._copyValues(CrossValidatorModel(bestModel, metrics, subModels)) 

 

def _kFold(self, dataset): 

nFolds = self.getOrDefault(self.numFolds) 

foldCol = self.getOrDefault(self.foldCol) 

 

datasets = [] 

if not foldCol: 

# Do random k-fold split. 

seed = self.getOrDefault(self.seed) 

h = 1.0 / nFolds 

randCol = self.uid + "_rand" 

df = dataset.select("*", rand(seed).alias(randCol)) 

for i in range(nFolds): 

validateLB = i * h 

validateUB = (i + 1) * h 

condition = (df[randCol] >= validateLB) & (df[randCol] < validateUB) 

validation = df.filter(condition) 

train = df.filter(~condition) 

datasets.append((train, validation)) 

else: 

# Use user-specified fold numbers. 

def checker(foldNum): 

if foldNum < 0 or foldNum >= nFolds: 

raise ValueError( 

"Fold number must be in range [0, %s), but got %s." % (nFolds, foldNum)) 

return True 

 

checker_udf = UserDefinedFunction(checker, BooleanType()) 

for i in range(nFolds): 

training = dataset.filter(checker_udf(dataset[foldCol]) & (col(foldCol) != lit(i))) 

validation = dataset.filter( 

checker_udf(dataset[foldCol]) & (col(foldCol) == lit(i))) 

781 ↛ 782line 781 didn't jump to line 782, because the condition on line 781 was never true if training.rdd.getNumPartitions() == 0 or len(training.take(1)) == 0: 

raise ValueError("The training data at fold %s is empty." % i) 

if validation.rdd.getNumPartitions() == 0 or len(validation.take(1)) == 0: 

raise ValueError("The validation data at fold %s is empty." % i) 

datasets.append((training, validation)) 

 

return datasets 

 

def copy(self, extra=None): 

""" 

Creates a copy of this instance with a randomly generated uid 

and some extra params. This copies creates a deep copy of 

the embedded paramMap, and copies the embedded and extra parameters over. 

 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

extra : dict, optional 

Extra parameters to copy to the new instance 

 

Returns 

------- 

:py:class:`CrossValidator` 

Copy of this instance 

""" 

808 ↛ 810line 808 didn't jump to line 810, because the condition on line 808 was never false if extra is None: 

extra = dict() 

newCV = Params.copy(self, extra) 

811 ↛ 814line 811 didn't jump to line 814, because the condition on line 811 was never false if self.isSet(self.estimator): 

newCV.setEstimator(self.getEstimator().copy(extra)) 

# estimatorParamMaps remain the same 

814 ↛ 816line 814 didn't jump to line 816, because the condition on line 814 was never false if self.isSet(self.evaluator): 

newCV.setEvaluator(self.getEvaluator().copy(extra)) 

return newCV 

 

@since("2.3.0") 

def write(self): 

"""Returns an MLWriter instance for this ML instance.""" 

if _ValidatorSharedReadWrite.is_java_convertible(self): 

return JavaMLWriter(self) 

return CrossValidatorWriter(self) 

 

@classmethod 

@since("2.3.0") 

def read(cls): 

"""Returns an MLReader instance for this class.""" 

return CrossValidatorReader(cls) 

 

@classmethod 

def _from_java(cls, java_stage): 

""" 

Given a Java CrossValidator, create and return a Python wrapper of it. 

Used for ML persistence. 

""" 

 

estimator, epms, evaluator = super(CrossValidator, cls)._from_java_impl(java_stage) 

numFolds = java_stage.getNumFolds() 

seed = java_stage.getSeed() 

parallelism = java_stage.getParallelism() 

collectSubModels = java_stage.getCollectSubModels() 

foldCol = java_stage.getFoldCol() 

# Create a new instance of this stage. 

py_stage = cls(estimator=estimator, estimatorParamMaps=epms, evaluator=evaluator, 

numFolds=numFolds, seed=seed, parallelism=parallelism, 

collectSubModels=collectSubModels, foldCol=foldCol) 

py_stage._resetUid(java_stage.uid()) 

return py_stage 

 

def _to_java(self): 

""" 

Transfer this instance to a Java CrossValidator. Used for ML persistence. 

 

Returns 

------- 

py4j.java_gateway.JavaObject 

Java object equivalent to this instance. 

""" 

 

estimator, epms, evaluator = super(CrossValidator, self)._to_java_impl() 

 

_java_obj = JavaParams._new_java_obj("org.apache.spark.ml.tuning.CrossValidator", self.uid) 

_java_obj.setEstimatorParamMaps(epms) 

_java_obj.setEvaluator(evaluator) 

_java_obj.setEstimator(estimator) 

_java_obj.setSeed(self.getSeed()) 

_java_obj.setNumFolds(self.getNumFolds()) 

_java_obj.setParallelism(self.getParallelism()) 

_java_obj.setCollectSubModels(self.getCollectSubModels()) 

_java_obj.setFoldCol(self.getFoldCol()) 

 

return _java_obj 

 

 

class CrossValidatorModel(Model, _CrossValidatorParams, MLReadable, MLWritable): 

""" 

 

CrossValidatorModel contains the model with the highest average cross-validation 

metric across folds and uses this model to transform input data. CrossValidatorModel 

also tracks the metrics for each param map evaluated. 

 

.. versionadded:: 1.4.0 

""" 

 

def __init__(self, bestModel, avgMetrics=None, subModels=None): 

super(CrossValidatorModel, self).__init__() 

#: best model from cross validation 

self.bestModel = bestModel 

#: Average cross-validation metrics for each paramMap in 

#: CrossValidator.estimatorParamMaps, in the corresponding order. 

self.avgMetrics = avgMetrics or [] 

#: sub model list from cross validation 

self.subModels = subModels 

 

def _transform(self, dataset): 

return self.bestModel.transform(dataset) 

 

def copy(self, extra=None): 

""" 

Creates a copy of this instance with a randomly generated uid 

and some extra params. This copies the underlying bestModel, 

creates a deep copy of the embedded paramMap, and 

copies the embedded and extra parameters over. 

It does not copy the extra Params into the subModels. 

 

.. versionadded:: 1.4.0 

 

Parameters 

---------- 

extra : dict, optional 

Extra parameters to copy to the new instance 

 

Returns 

------- 

:py:class:`CrossValidatorModel` 

Copy of this instance 

""" 

919 ↛ 921line 919 didn't jump to line 921, because the condition on line 919 was never false if extra is None: 

extra = dict() 

bestModel = self.bestModel.copy(extra) 

avgMetrics = list(self.avgMetrics) 

subModels = [ 

[sub_model.copy() for sub_model in fold_sub_models] 

for fold_sub_models in self.subModels 

] 

return self._copyValues(CrossValidatorModel(bestModel, avgMetrics, subModels), extra=extra) 

 

@since("2.3.0") 

def write(self): 

"""Returns an MLWriter instance for this ML instance.""" 

if _ValidatorSharedReadWrite.is_java_convertible(self): 

return JavaMLWriter(self) 

return CrossValidatorModelWriter(self) 

 

@classmethod 

@since("2.3.0") 

def read(cls): 

"""Returns an MLReader instance for this class.""" 

return CrossValidatorModelReader(cls) 

 

@classmethod 

def _from_java(cls, java_stage): 

""" 

Given a Java CrossValidatorModel, create and return a Python wrapper of it. 

Used for ML persistence. 

""" 

sc = SparkContext._active_spark_context 

bestModel = JavaParams._from_java(java_stage.bestModel()) 

avgMetrics = _java2py(sc, java_stage.avgMetrics()) 

estimator, epms, evaluator = super(CrossValidatorModel, cls)._from_java_impl(java_stage) 

 

py_stage = cls(bestModel=bestModel, avgMetrics=avgMetrics) 

params = { 

"evaluator": evaluator, 

"estimator": estimator, 

"estimatorParamMaps": epms, 

"numFolds": java_stage.getNumFolds(), 

"foldCol": java_stage.getFoldCol(), 

"seed": java_stage.getSeed(), 

} 

for param_name, param_val in params.items(): 

py_stage = py_stage._set(**{param_name: param_val}) 

 

if java_stage.hasSubModels(): 

py_stage.subModels = [[JavaParams._from_java(sub_model) 

for sub_model in fold_sub_models] 

for fold_sub_models in java_stage.subModels()] 

 

py_stage._resetUid(java_stage.uid()) 

return py_stage 

 

def _to_java(self): 

""" 

Transfer this instance to a Java CrossValidatorModel. Used for ML persistence. 

 

Returns 

------- 

py4j.java_gateway.JavaObject 

Java object equivalent to this instance. 

""" 

 

sc = SparkContext._active_spark_context 

_java_obj = JavaParams._new_java_obj("org.apache.spark.ml.tuning.CrossValidatorModel", 

self.uid, 

self.bestModel._to_java(), 

_py2java(sc, self.avgMetrics)) 

estimator, epms, evaluator = super(CrossValidatorModel, self)._to_java_impl() 

 

params = { 

"evaluator": evaluator, 

"estimator": estimator, 

"estimatorParamMaps": epms, 

"numFolds": self.getNumFolds(), 

"foldCol": self.getFoldCol(), 

"seed": self.getSeed(), 

} 

for param_name, param_val in params.items(): 

java_param = _java_obj.getParam(param_name) 

pair = java_param.w(param_val) 

_java_obj.set(pair) 

 

if self.subModels is not None: 

java_sub_models = [[sub_model._to_java() for sub_model in fold_sub_models] 

for fold_sub_models in self.subModels] 

_java_obj.setSubModels(java_sub_models) 

return _java_obj 

 

 

@inherit_doc 

class TrainValidationSplitReader(MLReader): 

 

def __init__(self, cls): 

super(TrainValidationSplitReader, self).__init__() 

self.cls = cls 

 

def load(self, path): 

metadata = DefaultParamsReader.loadMetadata(path, self.sc) 

if not DefaultParamsReader.isPythonParamsInstance(metadata): 

return JavaMLReader(self.cls).load(path) 

else: 

metadata, estimator, evaluator, estimatorParamMaps = \ 

_ValidatorSharedReadWrite.load(path, self.sc, metadata) 

tvs = TrainValidationSplit(estimator=estimator, 

estimatorParamMaps=estimatorParamMaps, 

evaluator=evaluator) 

tvs = tvs._resetUid(metadata['uid']) 

DefaultParamsReader.getAndSetParams(tvs, metadata, skipParams=['estimatorParamMaps']) 

return tvs 

 

 

@inherit_doc 

class TrainValidationSplitWriter(MLWriter): 

 

def __init__(self, instance): 

super(TrainValidationSplitWriter, self).__init__() 

self.instance = instance 

 

def saveImpl(self, path): 

_ValidatorSharedReadWrite.validateParams(self.instance) 

_ValidatorSharedReadWrite.saveImpl(path, self.instance, self.sc) 

 

 

@inherit_doc 

class TrainValidationSplitModelReader(MLReader): 

 

def __init__(self, cls): 

super(TrainValidationSplitModelReader, self).__init__() 

self.cls = cls 

 

def load(self, path): 

metadata = DefaultParamsReader.loadMetadata(path, self.sc) 

if not DefaultParamsReader.isPythonParamsInstance(metadata): 

return JavaMLReader(self.cls).load(path) 

else: 

metadata, estimator, evaluator, estimatorParamMaps = \ 

_ValidatorSharedReadWrite.load(path, self.sc, metadata) 

bestModelPath = os.path.join(path, 'bestModel') 

bestModel = DefaultParamsReader.loadParamsInstance(bestModelPath, self.sc) 

validationMetrics = metadata['validationMetrics'] 

persistSubModels = ('persistSubModels' in metadata) and metadata['persistSubModels'] 

 

if persistSubModels: 

subModels = [None] * len(estimatorParamMaps) 

for paramIndex in range(len(estimatorParamMaps)): 

modelPath = os.path.join(path, 'subModels', f'{paramIndex}') 

subModels[paramIndex] = \ 

DefaultParamsReader.loadParamsInstance(modelPath, self.sc) 

else: 

subModels = None 

 

tvsModel = TrainValidationSplitModel( 

bestModel, validationMetrics=validationMetrics, subModels=subModels) 

tvsModel = tvsModel._resetUid(metadata['uid']) 

tvsModel.set(tvsModel.estimator, estimator) 

tvsModel.set(tvsModel.estimatorParamMaps, estimatorParamMaps) 

tvsModel.set(tvsModel.evaluator, evaluator) 

DefaultParamsReader.getAndSetParams( 

tvsModel, metadata, skipParams=['estimatorParamMaps']) 

return tvsModel 

 

 

@inherit_doc 

class TrainValidationSplitModelWriter(MLWriter): 

 

def __init__(self, instance): 

super(TrainValidationSplitModelWriter, self).__init__() 

self.instance = instance 

 

def saveImpl(self, path): 

_ValidatorSharedReadWrite.validateParams(self.instance) 

instance = self.instance 

persistSubModels = _ValidatorSharedReadWrite \ 

.getValidatorModelWriterPersistSubModelsParam(self) 

 

extraMetadata = {'validationMetrics': instance.validationMetrics, 

'persistSubModels': persistSubModels} 

_ValidatorSharedReadWrite.saveImpl(path, instance, self.sc, extraMetadata=extraMetadata) 

bestModelPath = os.path.join(path, 'bestModel') 

instance.bestModel.save(bestModelPath) 

if persistSubModels: 

1102 ↛ 1103line 1102 didn't jump to line 1103, because the condition on line 1102 was never true if instance.subModels is None: 

raise ValueError(_save_with_persist_submodels_no_submodels_found_err) 

subModelsPath = os.path.join(path, 'subModels') 

for paramIndex in range(len(instance.getEstimatorParamMaps())): 

modelPath = os.path.join(subModelsPath, f'{paramIndex}') 

instance.subModels[paramIndex].save(modelPath) 

 

 

class _TrainValidationSplitParams(_ValidatorParams): 

""" 

Params for :py:class:`TrainValidationSplit` and :py:class:`TrainValidationSplitModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

trainRatio = Param(Params._dummy(), "trainRatio", "Param for ratio between train and\ 

validation data. Must be between 0 and 1.", typeConverter=TypeConverters.toFloat) 

 

def __init__(self, *args): 

super(_TrainValidationSplitParams, self).__init__(*args) 

self._setDefault(trainRatio=0.75) 

 

@since("2.0.0") 

def getTrainRatio(self): 

""" 

Gets the value of trainRatio or its default value. 

""" 

return self.getOrDefault(self.trainRatio) 

 

 

class TrainValidationSplit(Estimator, _TrainValidationSplitParams, HasParallelism, 

HasCollectSubModels, MLReadable, MLWritable): 

""" 

Validation for hyper-parameter tuning. Randomly splits the input dataset into train and 

validation sets, and uses evaluation metric on the validation set to select the best model. 

Similar to :class:`CrossValidator`, but only splits the set once. 

 

.. versionadded:: 2.0.0 

 

Examples 

-------- 

>>> from pyspark.ml.classification import LogisticRegression 

>>> from pyspark.ml.evaluation import BinaryClassificationEvaluator 

>>> from pyspark.ml.linalg import Vectors 

>>> from pyspark.ml.tuning import TrainValidationSplit, ParamGridBuilder 

>>> from pyspark.ml.tuning import TrainValidationSplitModel 

>>> import tempfile 

>>> dataset = spark.createDataFrame( 

... [(Vectors.dense([0.0]), 0.0), 

... (Vectors.dense([0.4]), 1.0), 

... (Vectors.dense([0.5]), 0.0), 

... (Vectors.dense([0.6]), 1.0), 

... (Vectors.dense([1.0]), 1.0)] * 10, 

... ["features", "label"]).repartition(1) 

>>> lr = LogisticRegression() 

>>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() 

>>> evaluator = BinaryClassificationEvaluator() 

>>> tvs = TrainValidationSplit(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator, 

... parallelism=1, seed=42) 

>>> tvsModel = tvs.fit(dataset) 

>>> tvsModel.getTrainRatio() 

0.75 

>>> tvsModel.validationMetrics 

[0.5, ... 

>>> path = tempfile.mkdtemp() 

>>> model_path = path + "/model" 

>>> tvsModel.write().save(model_path) 

>>> tvsModelRead = TrainValidationSplitModel.read().load(model_path) 

>>> tvsModelRead.validationMetrics 

[0.5, ... 

>>> evaluator.evaluate(tvsModel.transform(dataset)) 

0.833... 

>>> evaluator.evaluate(tvsModelRead.transform(dataset)) 

0.833... 

""" 

 

@keyword_only 

def __init__(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, 

trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None): 

""" 

__init__(self, \\*, estimator=None, estimatorParamMaps=None, evaluator=None, \ 

trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None) 

""" 

super(TrainValidationSplit, self).__init__() 

self._setDefault(parallelism=1) 

kwargs = self._input_kwargs 

self._set(**kwargs) 

 

@since("2.0.0") 

@keyword_only 

def setParams(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, 

trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None): 

""" 

setParams(self, \\*, estimator=None, estimatorParamMaps=None, evaluator=None, \ 

trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None): 

Sets params for the train validation split. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

@since("2.0.0") 

def setEstimator(self, value): 

""" 

Sets the value of :py:attr:`estimator`. 

""" 

return self._set(estimator=value) 

 

@since("2.0.0") 

def setEstimatorParamMaps(self, value): 

""" 

Sets the value of :py:attr:`estimatorParamMaps`. 

""" 

return self._set(estimatorParamMaps=value) 

 

@since("2.0.0") 

def setEvaluator(self, value): 

""" 

Sets the value of :py:attr:`evaluator`. 

""" 

return self._set(evaluator=value) 

 

@since("2.0.0") 

def setTrainRatio(self, value): 

""" 

Sets the value of :py:attr:`trainRatio`. 

""" 

return self._set(trainRatio=value) 

 

def setSeed(self, value): 

""" 

Sets the value of :py:attr:`seed`. 

""" 

return self._set(seed=value) 

 

def setParallelism(self, value): 

""" 

Sets the value of :py:attr:`parallelism`. 

""" 

return self._set(parallelism=value) 

 

def setCollectSubModels(self, value): 

""" 

Sets the value of :py:attr:`collectSubModels`. 

""" 

return self._set(collectSubModels=value) 

 

def _fit(self, dataset): 

est = self.getOrDefault(self.estimator) 

epm = self.getOrDefault(self.estimatorParamMaps) 

numModels = len(epm) 

eva = self.getOrDefault(self.evaluator) 

tRatio = self.getOrDefault(self.trainRatio) 

seed = self.getOrDefault(self.seed) 

randCol = self.uid + "_rand" 

df = dataset.select("*", rand(seed).alias(randCol)) 

condition = (df[randCol] >= tRatio) 

validation = df.filter(condition).cache() 

train = df.filter(~condition).cache() 

 

subModels = None 

collectSubModelsParam = self.getCollectSubModels() 

if collectSubModelsParam: 

subModels = [None for i in range(numModels)] 

 

tasks = map( 

inheritable_thread_target, 

_parallelFitTasks(est, train, eva, validation, epm, collectSubModelsParam)) 

pool = ThreadPool(processes=min(self.getParallelism(), numModels)) 

metrics = [None] * numModels 

for j, metric, subModel in pool.imap_unordered(lambda f: f(), tasks): 

metrics[j] = metric 

if collectSubModelsParam: 

subModels[j] = subModel 

 

train.unpersist() 

validation.unpersist() 

 

if eva.isLargerBetter(): 

bestIndex = np.argmax(metrics) 

else: 

bestIndex = np.argmin(metrics) 

bestModel = est.fit(dataset, epm[bestIndex]) 

return self._copyValues(TrainValidationSplitModel(bestModel, metrics, subModels)) 

 

def copy(self, extra=None): 

""" 

Creates a copy of this instance with a randomly generated uid 

and some extra params. This copies creates a deep copy of 

the embedded paramMap, and copies the embedded and extra parameters over. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

extra : dict, optional 

Extra parameters to copy to the new instance 

 

Returns 

------- 

:py:class:`TrainValidationSplit` 

Copy of this instance 

""" 

1304 ↛ 1306line 1304 didn't jump to line 1306, because the condition on line 1304 was never false if extra is None: 

extra = dict() 

newTVS = Params.copy(self, extra) 

1307 ↛ 1310line 1307 didn't jump to line 1310, because the condition on line 1307 was never false if self.isSet(self.estimator): 

newTVS.setEstimator(self.getEstimator().copy(extra)) 

# estimatorParamMaps remain the same 

1310 ↛ 1312line 1310 didn't jump to line 1312, because the condition on line 1310 was never false if self.isSet(self.evaluator): 

newTVS.setEvaluator(self.getEvaluator().copy(extra)) 

return newTVS 

 

@since("2.3.0") 

def write(self): 

"""Returns an MLWriter instance for this ML instance.""" 

if _ValidatorSharedReadWrite.is_java_convertible(self): 

return JavaMLWriter(self) 

return TrainValidationSplitWriter(self) 

 

@classmethod 

@since("2.3.0") 

def read(cls): 

"""Returns an MLReader instance for this class.""" 

return TrainValidationSplitReader(cls) 

 

@classmethod 

def _from_java(cls, java_stage): 

""" 

Given a Java TrainValidationSplit, create and return a Python wrapper of it. 

Used for ML persistence. 

""" 

 

estimator, epms, evaluator = super(TrainValidationSplit, cls)._from_java_impl(java_stage) 

trainRatio = java_stage.getTrainRatio() 

seed = java_stage.getSeed() 

parallelism = java_stage.getParallelism() 

collectSubModels = java_stage.getCollectSubModels() 

# Create a new instance of this stage. 

py_stage = cls(estimator=estimator, estimatorParamMaps=epms, evaluator=evaluator, 

trainRatio=trainRatio, seed=seed, parallelism=parallelism, 

collectSubModels=collectSubModels) 

py_stage._resetUid(java_stage.uid()) 

return py_stage 

 

def _to_java(self): 

""" 

Transfer this instance to a Java TrainValidationSplit. Used for ML persistence. 

 

Returns 

------- 

py4j.java_gateway.JavaObject 

Java object equivalent to this instance. 

""" 

 

estimator, epms, evaluator = super(TrainValidationSplit, self)._to_java_impl() 

 

_java_obj = JavaParams._new_java_obj("org.apache.spark.ml.tuning.TrainValidationSplit", 

self.uid) 

_java_obj.setEstimatorParamMaps(epms) 

_java_obj.setEvaluator(evaluator) 

_java_obj.setEstimator(estimator) 

_java_obj.setTrainRatio(self.getTrainRatio()) 

_java_obj.setSeed(self.getSeed()) 

_java_obj.setParallelism(self.getParallelism()) 

_java_obj.setCollectSubModels(self.getCollectSubModels()) 

return _java_obj 

 

 

class TrainValidationSplitModel(Model, _TrainValidationSplitParams, MLReadable, MLWritable): 

""" 

Model from train validation split. 

 

.. versionadded:: 2.0.0 

""" 

 

def __init__(self, bestModel, validationMetrics=None, subModels=None): 

super(TrainValidationSplitModel, self).__init__() 

#: best model from train validation split 

self.bestModel = bestModel 

#: evaluated validation metrics 

self.validationMetrics = validationMetrics or [] 

#: sub models from train validation split 

self.subModels = subModels 

 

def _transform(self, dataset): 

return self.bestModel.transform(dataset) 

 

def copy(self, extra=None): 

""" 

Creates a copy of this instance with a randomly generated uid 

and some extra params. This copies the underlying bestModel, 

creates a deep copy of the embedded paramMap, and 

copies the embedded and extra parameters over. 

And, this creates a shallow copy of the validationMetrics. 

It does not copy the extra Params into the subModels. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

extra : dict, optional 

Extra parameters to copy to the new instance 

 

Returns 

------- 

:py:class:`TrainValidationSplitModel` 

Copy of this instance 

""" 

1410 ↛ 1412line 1410 didn't jump to line 1412, because the condition on line 1410 was never false if extra is None: 

extra = dict() 

bestModel = self.bestModel.copy(extra) 

validationMetrics = list(self.validationMetrics) 

subModels = [model.copy() for model in self.subModels] 

return self._copyValues( 

TrainValidationSplitModel(bestModel, validationMetrics, subModels), 

extra=extra 

) 

 

@since("2.3.0") 

def write(self): 

"""Returns an MLWriter instance for this ML instance.""" 

if _ValidatorSharedReadWrite.is_java_convertible(self): 

return JavaMLWriter(self) 

return TrainValidationSplitModelWriter(self) 

 

@classmethod 

@since("2.3.0") 

def read(cls): 

"""Returns an MLReader instance for this class.""" 

return TrainValidationSplitModelReader(cls) 

 

@classmethod 

def _from_java(cls, java_stage): 

""" 

Given a Java TrainValidationSplitModel, create and return a Python wrapper of it. 

Used for ML persistence. 

""" 

 

# Load information from java_stage to the instance. 

sc = SparkContext._active_spark_context 

bestModel = JavaParams._from_java(java_stage.bestModel()) 

validationMetrics = _java2py(sc, java_stage.validationMetrics()) 

estimator, epms, evaluator = super(TrainValidationSplitModel, 

cls)._from_java_impl(java_stage) 

# Create a new instance of this stage. 

py_stage = cls(bestModel=bestModel, 

validationMetrics=validationMetrics) 

params = { 

"evaluator": evaluator, 

"estimator": estimator, 

"estimatorParamMaps": epms, 

"trainRatio": java_stage.getTrainRatio(), 

"seed": java_stage.getSeed(), 

} 

for param_name, param_val in params.items(): 

py_stage = py_stage._set(**{param_name: param_val}) 

 

if java_stage.hasSubModels(): 

py_stage.subModels = [JavaParams._from_java(sub_model) 

for sub_model in java_stage.subModels()] 

 

py_stage._resetUid(java_stage.uid()) 

return py_stage 

 

def _to_java(self): 

""" 

Transfer this instance to a Java TrainValidationSplitModel. Used for ML persistence. 

 

Returns 

------- 

py4j.java_gateway.JavaObject 

Java object equivalent to this instance. 

""" 

 

sc = SparkContext._active_spark_context 

_java_obj = JavaParams._new_java_obj( 

"org.apache.spark.ml.tuning.TrainValidationSplitModel", 

self.uid, 

self.bestModel._to_java(), 

_py2java(sc, self.validationMetrics)) 

estimator, epms, evaluator = super(TrainValidationSplitModel, self)._to_java_impl() 

 

params = { 

"evaluator": evaluator, 

"estimator": estimator, 

"estimatorParamMaps": epms, 

"trainRatio": self.getTrainRatio(), 

"seed": self.getSeed(), 

} 

for param_name, param_val in params.items(): 

java_param = _java_obj.getParam(param_name) 

pair = java_param.w(param_val) 

_java_obj.set(pair) 

 

if self.subModels is not None: 

java_sub_models = [sub_model._to_java() for sub_model in self.subModels] 

_java_obj.setSubModels(java_sub_models) 

 

return _java_obj 

 

 

if __name__ == "__main__": 

import doctest 

 

from pyspark.sql import SparkSession 

globs = globals().copy() 

 

# The small batch size here ensures that we see multiple batches, 

# even in these small test examples: 

spark = SparkSession.builder\ 

.master("local[2]")\ 

.appName("ml.tuning tests")\ 

.getOrCreate() 

sc = spark.sparkContext 

globs['sc'] = sc 

globs['spark'] = spark 

(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

spark.stop() 

1520 ↛ 1521line 1520 didn't jump to line 1521, because the condition on line 1520 was never true if failure_count: 

sys.exit(-1)