#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import py4j
from pyspark.ml.linalg import DenseVector, Vectors
from pyspark.ml.regression import LinearRegression
from pyspark.ml.wrapper import ( # type: ignore[attr-defined]
_java2py, _py2java, JavaParams, JavaWrapper
)
from pyspark.testing.mllibutils import MLlibTestCase
from pyspark.testing.mlutils import SparkSessionTestCase
from pyspark.testing.utils import eventually
class JavaWrapperMemoryTests(SparkSessionTestCase):
def test_java_object_gets_detached(self):
df = self.spark.createDataFrame([(1.0, 2.0, Vectors.dense(1.0)),
(0.0, 2.0, Vectors.sparse(1, [], []))],
["label", "weight", "features"])
lr = LinearRegression(maxIter=1, regParam=0.0, solver="normal", weightCol="weight",
fitIntercept=False)
model = lr.fit(df)
summary = model.summary
self.assertIsInstance(model, JavaWrapper)
self.assertIsInstance(summary, JavaWrapper)
self.assertIsInstance(model, JavaParams)
self.assertNotIsInstance(summary, JavaParams)
error_no_object = 'Target Object ID does not exist for this gateway'
self.assertIn("LinearRegression_", model._java_obj.toString())
self.assertIn("LinearRegressionTrainingSummary", summary._java_obj.toString())
model.__del__()
def condition():
with self.assertRaisesRegex(py4j.protocol.Py4JError, error_no_object):
model._java_obj.toString()
self.assertIn("LinearRegressionTrainingSummary", summary._java_obj.toString())
return True
eventually(condition, timeout=10, catch_assertions=True)
try:
summary.__del__()
except:
pass
def condition():
with self.assertRaisesRegex(py4j.protocol.Py4JError, error_no_object):
model._java_obj.toString()
with self.assertRaisesRegex(py4j.protocol.Py4JError, error_no_object):
summary._java_obj.toString()
return True
eventually(condition, timeout=10, catch_assertions=True)
class WrapperTests(MLlibTestCase):
def test_new_java_array(self):
# test array of strings
str_list = ["a", "b", "c"]
java_class = self.sc._gateway.jvm.java.lang.String
java_array = JavaWrapper._new_java_array(str_list, java_class)
self.assertEqual(_java2py(self.sc, java_array), str_list)
# test array of integers
int_list = [1, 2, 3]
java_class = self.sc._gateway.jvm.java.lang.Integer
java_array = JavaWrapper._new_java_array(int_list, java_class)
self.assertEqual(_java2py(self.sc, java_array), int_list)
# test array of floats
float_list = [0.1, 0.2, 0.3]
java_class = self.sc._gateway.jvm.java.lang.Double
java_array = JavaWrapper._new_java_array(float_list, java_class)
self.assertEqual(_java2py(self.sc, java_array), float_list)
# test array of bools
bool_list = [False, True, True]
java_class = self.sc._gateway.jvm.java.lang.Boolean
java_array = JavaWrapper._new_java_array(bool_list, java_class)
self.assertEqual(_java2py(self.sc, java_array), bool_list)
# test array of Java DenseVectors
v1 = DenseVector([0.0, 1.0])
v2 = DenseVector([1.0, 0.0])
vec_java_list = [_py2java(self.sc, v1), _py2java(self.sc, v2)]
java_class = self.sc._gateway.jvm.org.apache.spark.ml.linalg.DenseVector
java_array = JavaWrapper._new_java_array(vec_java_list, java_class)
self.assertEqual(_java2py(self.sc, java_array), [v1, v2])
# test empty array
java_class = self.sc._gateway.jvm.java.lang.Integer
java_array = JavaWrapper._new_java_array([], java_class)
self.assertEqual(_java2py(self.sc, java_array), [])
# test array of array of strings
str_list = [["a", "b", "c"], ["d", "e"], ["f", "g", "h", "i"], []]
expected_str_list = [("a", "b", "c", None), ("d", "e", None, None), ("f", "g", "h", "i"),
(None, None, None, None)]
java_class = self.sc._gateway.jvm.java.lang.String
java_array = JavaWrapper._new_java_array(str_list, java_class)
self.assertEqual(_java2py(self.sc, java_array), expected_str_list)
if __name__ == "__main__":
from pyspark.ml.tests.test_wrapper import * # noqa: F401
try:
import xmlrunner # type: ignore[import]
testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)
|