Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import unittest 

import array as pyarray 

 

from numpy import arange, array, array_equal, inf, ones, tile, zeros 

 

from pyspark.serializers import PickleSerializer 

from pyspark.ml.linalg import DenseMatrix, DenseVector, MatrixUDT, SparseMatrix, SparseVector, \ 

Vector, VectorUDT, Vectors 

from pyspark.testing.mllibutils import MLlibTestCase 

from pyspark.sql import Row 

 

 

class VectorTests(MLlibTestCase): 

 

def _test_serialize(self, v): 

ser = PickleSerializer() 

self.assertEqual(v, ser.loads(ser.dumps(v))) 

jvec = self.sc._jvm.org.apache.spark.ml.python.MLSerDe.loads(bytearray(ser.dumps(v))) 

nv = ser.loads(bytes(self.sc._jvm.org.apache.spark.ml.python.MLSerDe.dumps(jvec))) 

self.assertEqual(v, nv) 

vs = [v] * 100 

jvecs = self.sc._jvm.org.apache.spark.ml.python.MLSerDe.loads(bytearray(ser.dumps(vs))) 

nvs = ser.loads(bytes(self.sc._jvm.org.apache.spark.ml.python.MLSerDe.dumps(jvecs))) 

self.assertEqual(vs, nvs) 

 

def test_serialize(self): 

self._test_serialize(DenseVector(range(10))) 

self._test_serialize(DenseVector(array([1., 2., 3., 4.]))) 

self._test_serialize(DenseVector(pyarray.array('d', range(10)))) 

self._test_serialize(SparseVector(4, {1: 1, 3: 2})) 

self._test_serialize(SparseVector(3, {})) 

self._test_serialize(DenseMatrix(2, 3, range(6))) 

sm1 = SparseMatrix( 

3, 4, [0, 2, 2, 4, 4], [1, 2, 1, 2], [1.0, 2.0, 4.0, 5.0]) 

self._test_serialize(sm1) 

 

def test_dot(self): 

sv = SparseVector(4, {1: 1, 3: 2}) 

dv = DenseVector(array([1., 2., 3., 4.])) 

lst = DenseVector([1, 2, 3, 4]) 

mat = array([[1., 2., 3., 4.], 

[1., 2., 3., 4.], 

[1., 2., 3., 4.], 

[1., 2., 3., 4.]]) 

arr = pyarray.array('d', [0, 1, 2, 3]) 

self.assertEqual(10.0, sv.dot(dv)) 

self.assertTrue(array_equal(array([3., 6., 9., 12.]), sv.dot(mat))) 

self.assertEqual(30.0, dv.dot(dv)) 

self.assertTrue(array_equal(array([10., 20., 30., 40.]), dv.dot(mat))) 

self.assertEqual(30.0, lst.dot(dv)) 

self.assertTrue(array_equal(array([10., 20., 30., 40.]), lst.dot(mat))) 

self.assertEqual(7.0, sv.dot(arr)) 

 

def test_squared_distance(self): 

def squared_distance(a, b): 

73 ↛ 76line 73 didn't jump to line 76, because the condition on line 73 was never false if isinstance(a, Vector): 

return a.squared_distance(b) 

else: 

return b.squared_distance(a) 

 

sv = SparseVector(4, {1: 1, 3: 2}) 

dv = DenseVector(array([1., 2., 3., 4.])) 

lst = DenseVector([4, 3, 2, 1]) 

lst1 = [4, 3, 2, 1] 

arr = pyarray.array('d', [0, 2, 1, 3]) 

narr = array([0, 2, 1, 3]) 

self.assertEqual(15.0, squared_distance(sv, dv)) 

self.assertEqual(25.0, squared_distance(sv, lst)) 

self.assertEqual(20.0, squared_distance(dv, lst)) 

self.assertEqual(15.0, squared_distance(dv, sv)) 

self.assertEqual(25.0, squared_distance(lst, sv)) 

self.assertEqual(20.0, squared_distance(lst, dv)) 

self.assertEqual(0.0, squared_distance(sv, sv)) 

self.assertEqual(0.0, squared_distance(dv, dv)) 

self.assertEqual(0.0, squared_distance(lst, lst)) 

self.assertEqual(25.0, squared_distance(sv, lst1)) 

self.assertEqual(3.0, squared_distance(sv, arr)) 

self.assertEqual(3.0, squared_distance(sv, narr)) 

 

def test_hash(self): 

v1 = DenseVector([0.0, 1.0, 0.0, 5.5]) 

v2 = SparseVector(4, [(1, 1.0), (3, 5.5)]) 

v3 = DenseVector([0.0, 1.0, 0.0, 5.5]) 

v4 = SparseVector(4, [(1, 1.0), (3, 2.5)]) 

self.assertEqual(hash(v1), hash(v2)) 

self.assertEqual(hash(v1), hash(v3)) 

self.assertEqual(hash(v2), hash(v3)) 

self.assertFalse(hash(v1) == hash(v4)) 

self.assertFalse(hash(v2) == hash(v4)) 

 

def test_eq(self): 

v1 = DenseVector([0.0, 1.0, 0.0, 5.5]) 

v2 = SparseVector(4, [(1, 1.0), (3, 5.5)]) 

v3 = DenseVector([0.0, 1.0, 0.0, 5.5]) 

v4 = SparseVector(6, [(1, 1.0), (3, 5.5)]) 

v5 = DenseVector([0.0, 1.0, 0.0, 2.5]) 

v6 = SparseVector(4, [(1, 1.0), (3, 2.5)]) 

dm1 = DenseMatrix(2, 2, [2, 0, 0, 0]) 

sm1 = SparseMatrix(2, 2, [0, 2, 3], [0], [2]) 

self.assertEqual(v1, v2) 

self.assertEqual(v1, v3) 

self.assertFalse(v2 == v4) 

self.assertFalse(v1 == v5) 

self.assertFalse(v1 == v6) 

# this is done as Dense and Sparse matrices can be semantically 

# equal while still implementing a different __eq__ method 

self.assertEqual(dm1, sm1) 

self.assertEqual(sm1, dm1) 

 

def test_equals(self): 

indices = [1, 2, 4] 

values = [1., 3., 2.] 

self.assertTrue(Vectors._equals(indices, values, list(range(5)), [0., 1., 3., 0., 2.])) 

self.assertFalse(Vectors._equals(indices, values, list(range(5)), [0., 3., 1., 0., 2.])) 

self.assertFalse(Vectors._equals(indices, values, list(range(5)), [0., 3., 0., 2.])) 

self.assertFalse(Vectors._equals(indices, values, list(range(5)), [0., 1., 3., 2., 2.])) 

 

def test_conversion(self): 

# numpy arrays should be automatically upcast to float64 

# tests for fix of [SPARK-5089] 

v = array([1, 2, 3, 4], dtype='float64') 

dv = DenseVector(v) 

self.assertTrue(dv.array.dtype == 'float64') 

v = array([1, 2, 3, 4], dtype='float32') 

dv = DenseVector(v) 

self.assertTrue(dv.array.dtype == 'float64') 

 

def test_sparse_vector_indexing(self): 

sv = SparseVector(5, {1: 1, 3: 2}) 

self.assertEqual(sv[0], 0.) 

self.assertEqual(sv[3], 2.) 

self.assertEqual(sv[1], 1.) 

self.assertEqual(sv[2], 0.) 

self.assertEqual(sv[4], 0.) 

self.assertEqual(sv[-1], 0.) 

self.assertEqual(sv[-2], 2.) 

self.assertEqual(sv[-3], 0.) 

self.assertEqual(sv[-5], 0.) 

for ind in [5, -6]: 

self.assertRaises(IndexError, sv.__getitem__, ind) 

for ind in [7.8, '1']: 

self.assertRaises(TypeError, sv.__getitem__, ind) 

 

zeros = SparseVector(4, {}) 

self.assertEqual(zeros[0], 0.0) 

self.assertEqual(zeros[3], 0.0) 

for ind in [4, -5]: 

self.assertRaises(IndexError, zeros.__getitem__, ind) 

 

empty = SparseVector(0, {}) 

for ind in [-1, 0, 1]: 

self.assertRaises(IndexError, empty.__getitem__, ind) 

 

def test_sparse_vector_iteration(self): 

self.assertListEqual(list(SparseVector(3, [], [])), [0.0, 0.0, 0.0]) 

self.assertListEqual(list(SparseVector(5, [0, 3], [1.0, 2.0])), [1.0, 0.0, 0.0, 2.0, 0.0]) 

 

def test_matrix_indexing(self): 

mat = DenseMatrix(3, 2, [0, 1, 4, 6, 8, 10]) 

expected = [[0, 6], [1, 8], [4, 10]] 

for i in range(3): 

for j in range(2): 

self.assertEqual(mat[i, j], expected[i][j]) 

 

for i, j in [(-1, 0), (4, 1), (3, 4)]: 

self.assertRaises(IndexError, mat.__getitem__, (i, j)) 

 

def test_repr_dense_matrix(self): 

mat = DenseMatrix(3, 2, [0, 1, 4, 6, 8, 10]) 

self.assertTrue( 

repr(mat), 

'DenseMatrix(3, 2, [0.0, 1.0, 4.0, 6.0, 8.0, 10.0], False)') 

 

mat = DenseMatrix(3, 2, [0, 1, 4, 6, 8, 10], True) 

self.assertTrue( 

repr(mat), 

'DenseMatrix(3, 2, [0.0, 1.0, 4.0, 6.0, 8.0, 10.0], False)') 

 

mat = DenseMatrix(6, 3, zeros(18)) 

self.assertTrue( 

repr(mat), 

'DenseMatrix(6, 3, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ..., \ 

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], False)') 

 

def test_repr_sparse_matrix(self): 

sm1t = SparseMatrix( 

3, 4, [0, 2, 3, 5], [0, 1, 2, 0, 2], [3.0, 2.0, 4.0, 9.0, 8.0], 

isTransposed=True) 

self.assertTrue( 

repr(sm1t), 

'SparseMatrix(3, 4, [0, 2, 3, 5], [0, 1, 2, 0, 2], [3.0, 2.0, 4.0, 9.0, 8.0], True)') 

 

indices = tile(arange(6), 3) 

values = ones(18) 

sm = SparseMatrix(6, 3, [0, 6, 12, 18], indices, values) 

self.assertTrue( 

repr(sm), "SparseMatrix(6, 3, [0, 6, 12, 18], \ 

[0, 1, 2, 3, 4, 5, 0, 1, ..., 4, 5, 0, 1, 2, 3, 4, 5], \ 

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ..., \ 

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], False)") 

 

self.assertTrue( 

str(sm), 

"6 X 3 CSCMatrix\n\ 

(0,0) 1.0\n(1,0) 1.0\n(2,0) 1.0\n(3,0) 1.0\n(4,0) 1.0\n(5,0) 1.0\n\ 

(0,1) 1.0\n(1,1) 1.0\n(2,1) 1.0\n(3,1) 1.0\n(4,1) 1.0\n(5,1) 1.0\n\ 

(0,2) 1.0\n(1,2) 1.0\n(2,2) 1.0\n(3,2) 1.0\n..\n..") 

 

sm = SparseMatrix(1, 18, zeros(19), [], []) 

self.assertTrue( 

repr(sm), 

'SparseMatrix(1, 18, \ 

[0, 0, 0, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0], [], [], False)') 

 

def test_sparse_matrix(self): 

# Test sparse matrix creation. 

sm1 = SparseMatrix( 

3, 4, [0, 2, 2, 4, 4], [1, 2, 1, 2], [1.0, 2.0, 4.0, 5.0]) 

self.assertEqual(sm1.numRows, 3) 

self.assertEqual(sm1.numCols, 4) 

self.assertEqual(sm1.colPtrs.tolist(), [0, 2, 2, 4, 4]) 

self.assertEqual(sm1.rowIndices.tolist(), [1, 2, 1, 2]) 

self.assertEqual(sm1.values.tolist(), [1.0, 2.0, 4.0, 5.0]) 

self.assertTrue( 

repr(sm1), 

'SparseMatrix(3, 4, [0, 2, 2, 4, 4], [1, 2, 1, 2], [1.0, 2.0, 4.0, 5.0], False)') 

 

# Test indexing 

expected = [ 

[0, 0, 0, 0], 

[1, 0, 4, 0], 

[2, 0, 5, 0]] 

 

for i in range(3): 

for j in range(4): 

self.assertEqual(expected[i][j], sm1[i, j]) 

self.assertTrue(array_equal(sm1.toArray(), expected)) 

 

for i, j in [(-1, 1), (4, 3), (3, 5)]: 

self.assertRaises(IndexError, sm1.__getitem__, (i, j)) 

 

# Test conversion to dense and sparse. 

smnew = sm1.toDense().toSparse() 

self.assertEqual(sm1.numRows, smnew.numRows) 

self.assertEqual(sm1.numCols, smnew.numCols) 

self.assertTrue(array_equal(sm1.colPtrs, smnew.colPtrs)) 

self.assertTrue(array_equal(sm1.rowIndices, smnew.rowIndices)) 

self.assertTrue(array_equal(sm1.values, smnew.values)) 

 

sm1t = SparseMatrix( 

3, 4, [0, 2, 3, 5], [0, 1, 2, 0, 2], [3.0, 2.0, 4.0, 9.0, 8.0], 

isTransposed=True) 

self.assertEqual(sm1t.numRows, 3) 

self.assertEqual(sm1t.numCols, 4) 

self.assertEqual(sm1t.colPtrs.tolist(), [0, 2, 3, 5]) 

self.assertEqual(sm1t.rowIndices.tolist(), [0, 1, 2, 0, 2]) 

self.assertEqual(sm1t.values.tolist(), [3.0, 2.0, 4.0, 9.0, 8.0]) 

 

expected = [ 

[3, 2, 0, 0], 

[0, 0, 4, 0], 

[9, 0, 8, 0]] 

 

for i in range(3): 

for j in range(4): 

self.assertEqual(expected[i][j], sm1t[i, j]) 

self.assertTrue(array_equal(sm1t.toArray(), expected)) 

 

def test_dense_matrix_is_transposed(self): 

mat1 = DenseMatrix(3, 2, [0, 4, 1, 6, 3, 9], isTransposed=True) 

mat = DenseMatrix(3, 2, [0, 1, 3, 4, 6, 9]) 

self.assertEqual(mat1, mat) 

 

expected = [[0, 4], [1, 6], [3, 9]] 

for i in range(3): 

for j in range(2): 

self.assertEqual(mat1[i, j], expected[i][j]) 

self.assertTrue(array_equal(mat1.toArray(), expected)) 

 

sm = mat1.toSparse() 

self.assertTrue(array_equal(sm.rowIndices, [1, 2, 0, 1, 2])) 

self.assertTrue(array_equal(sm.colPtrs, [0, 2, 5])) 

self.assertTrue(array_equal(sm.values, [1, 3, 4, 6, 9])) 

 

def test_norms(self): 

a = DenseVector([0, 2, 3, -1]) 

self.assertAlmostEqual(a.norm(2), 3.742, 3) 

self.assertTrue(a.norm(1), 6) 

self.assertTrue(a.norm(inf), 3) 

a = SparseVector(4, [0, 2], [3, -4]) 

self.assertAlmostEqual(a.norm(2), 5) 

self.assertTrue(a.norm(1), 7) 

self.assertTrue(a.norm(inf), 4) 

 

tmp = SparseVector(4, [0, 2], [3, 0]) 

self.assertEqual(tmp.numNonzeros(), 1) 

 

 

class VectorUDTTests(MLlibTestCase): 

 

dv0 = DenseVector([]) 

dv1 = DenseVector([1.0, 2.0]) 

sv0 = SparseVector(2, [], []) 

sv1 = SparseVector(2, [1], [2.0]) 

udt = VectorUDT() 

 

def test_json_schema(self): 

self.assertEqual(VectorUDT.fromJson(self.udt.jsonValue()), self.udt) 

 

def test_serialization(self): 

for v in [self.dv0, self.dv1, self.sv0, self.sv1]: 

self.assertEqual(v, self.udt.deserialize(self.udt.serialize(v))) 

 

def test_infer_schema(self): 

rdd = self.sc.parallelize([Row(label=1.0, features=self.dv1), 

Row(label=0.0, features=self.sv1)]) 

df = rdd.toDF() 

schema = df.schema 

field = [f for f in schema.fields if f.name == "features"][0] 

self.assertEqual(field.dataType, self.udt) 

vectors = df.rdd.map(lambda p: p.features).collect() 

self.assertEqual(len(vectors), 2) 

for v in vectors: 

if isinstance(v, SparseVector): 

self.assertEqual(v, self.sv1) 

343 ↛ 346line 343 didn't jump to line 346, because the condition on line 343 was never false elif isinstance(v, DenseVector): 

self.assertEqual(v, self.dv1) 

else: 

raise TypeError("expecting a vector but got %r of type %r" % (v, type(v))) 

 

 

class MatrixUDTTests(MLlibTestCase): 

 

dm1 = DenseMatrix(3, 2, [0, 1, 4, 5, 9, 10]) 

dm2 = DenseMatrix(3, 2, [0, 1, 4, 5, 9, 10], isTransposed=True) 

sm1 = SparseMatrix(1, 1, [0, 1], [0], [2.0]) 

sm2 = SparseMatrix(2, 1, [0, 0, 1], [0], [5.0], isTransposed=True) 

udt = MatrixUDT() 

 

def test_json_schema(self): 

self.assertEqual(MatrixUDT.fromJson(self.udt.jsonValue()), self.udt) 

 

def test_serialization(self): 

for m in [self.dm1, self.dm2, self.sm1, self.sm2]: 

self.assertEqual(m, self.udt.deserialize(self.udt.serialize(m))) 

 

def test_infer_schema(self): 

rdd = self.sc.parallelize([("dense", self.dm1), ("sparse", self.sm1)]) 

df = rdd.toDF() 

schema = df.schema 

self.assertTrue(schema.fields[1].dataType, self.udt) 

matrices = df.rdd.map(lambda x: x._2).collect() 

self.assertEqual(len(matrices), 2) 

for m in matrices: 

if isinstance(m, DenseMatrix): 

self.assertTrue(m, self.dm1) 

374 ↛ 377line 374 didn't jump to line 377, because the condition on line 374 was never false elif isinstance(m, SparseMatrix): 

self.assertTrue(m, self.sm1) 

else: 

raise ValueError("Expected a matrix but got type %r" % type(m)) 

 

 

if __name__ == "__main__": 

from pyspark.ml.tests.test_linalg import * # noqa: F401 

 

try: 

import xmlrunner # type: ignore[import] 

testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) 

except ImportError: 

testRunner = None 

unittest.main(testRunner=testRunner, verbosity=2)