#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
from pyspark.sql.types import DoubleType, IntegerType
from pyspark.testing.mlutils import MockDataset, MockEstimator, MockUnaryTransformer, \
MockTransformer, SparkSessionTestCase
class TransformerTests(unittest.TestCase):
def test_transform_invalid_type(self):
transformer = MockTransformer()
data = MockDataset()
self.assertRaises(TypeError, transformer.transform, data, "")
class UnaryTransformerTests(SparkSessionTestCase):
def test_unary_transformer_validate_input_type(self):
shiftVal = 3
transformer = MockUnaryTransformer(shiftVal=shiftVal) \
.setInputCol("input").setOutputCol("output")
# should not raise any errors
transformer.validateInputType(DoubleType())
with self.assertRaises(TypeError):
# passing the wrong input type should raise an error
transformer.validateInputType(IntegerType())
def test_unary_transformer_transform(self):
shiftVal = 3
transformer = MockUnaryTransformer(shiftVal=shiftVal) \
.setInputCol("input").setOutputCol("output")
df = self.spark.range(0, 10).toDF('input')
df = df.withColumn("input", df.input.cast(dataType="double"))
transformed_df = transformer.transform(df)
results = transformed_df.select("input", "output").collect()
for res in results:
self.assertEqual(res.input + shiftVal, res.output)
class EstimatorTest(unittest.TestCase):
def setUp(self):
self.estimator = MockEstimator()
self.data = MockDataset()
def test_fit_invalid_params(self):
invalid_type_parms = ""
self.assertRaises(TypeError, self.estimator.fit, self.data, invalid_type_parms)
def testDefaultFitMultiple(self):
N = 4
params = [{self.estimator.fake: i} for i in range(N)]
modelIter = self.estimator.fitMultiple(self.data, params)
indexList = []
for index, model in modelIter:
self.assertEqual(model.getFake(), index)
indexList.append(index)
self.assertEqual(sorted(indexList), list(range(N)))
if __name__ == "__main__":
from pyspark.ml.tests.test_base import * # noqa: F401
try:
import xmlrunner # type: ignore[import]
testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)
|