Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import sys 

 

from pyspark import since, SparkContext 

from pyspark.ml.common import _java2py, _py2java 

from pyspark.ml.wrapper import JavaWrapper, _jvm 

from pyspark.sql.column import Column, _to_seq 

from pyspark.sql.functions import lit 

 

 

class ChiSquareTest(object): 

""" 

Conduct Pearson's independence test for every feature against the label. For each feature, 

the (feature, label) pairs are converted into a contingency matrix for which the Chi-squared 

statistic is computed. All label and feature values must be categorical. 

 

The null hypothesis is that the occurrence of the outcomes is statistically independent. 

 

.. versionadded:: 2.2.0 

 

""" 

@staticmethod 

def test(dataset, featuresCol, labelCol, flatten=False): 

""" 

Perform a Pearson's independence test using dataset. 

 

.. versionadded:: 2.2.0 

.. versionchanged:: 3.1.0 

Added optional ``flatten`` argument. 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

DataFrame of categorical labels and categorical features. 

Real-valued features will be treated as categorical for each distinct value. 

featuresCol : str 

Name of features column in dataset, of type `Vector` (`VectorUDT`). 

labelCol : str 

Name of label column in dataset, of any numerical type. 

flatten : bool, optional 

if True, flattens the returned dataframe. 

 

Returns 

------- 

:py:class:`pyspark.sql.DataFrame` 

DataFrame containing the test result for every feature against the label. 

If flatten is True, this DataFrame will contain one row per feature with the following 

fields: 

 

- `featureIndex: int` 

- `pValue: float` 

- `degreesOfFreedom: int` 

- `statistic: float` 

 

If flatten is False, this DataFrame will contain a single Row with the following fields: 

 

- `pValues: Vector` 

- `degreesOfFreedom: Array[int]` 

- `statistics: Vector` 

 

Each of these fields has one value per feature. 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import Vectors 

>>> from pyspark.ml.stat import ChiSquareTest 

>>> dataset = [[0, Vectors.dense([0, 0, 1])], 

... [0, Vectors.dense([1, 0, 1])], 

... [1, Vectors.dense([2, 1, 1])], 

... [1, Vectors.dense([3, 1, 1])]] 

>>> dataset = spark.createDataFrame(dataset, ["label", "features"]) 

>>> chiSqResult = ChiSquareTest.test(dataset, 'features', 'label') 

>>> chiSqResult.select("degreesOfFreedom").collect()[0] 

Row(degreesOfFreedom=[3, 1, 0]) 

>>> chiSqResult = ChiSquareTest.test(dataset, 'features', 'label', True) 

>>> row = chiSqResult.orderBy("featureIndex").collect() 

>>> row[0].statistic 

4.0 

""" 

sc = SparkContext._active_spark_context 

javaTestObj = _jvm().org.apache.spark.ml.stat.ChiSquareTest 

args = [_py2java(sc, arg) for arg in (dataset, featuresCol, labelCol, flatten)] 

return _java2py(sc, javaTestObj.test(*args)) 

 

 

class Correlation(object): 

""" 

Compute the correlation matrix for the input dataset of Vectors using the specified method. 

Methods currently supported: `pearson` (default), `spearman`. 

 

.. versionadded:: 2.2.0 

 

Notes 

----- 

For Spearman, a rank correlation, we need to create an RDD[Double] for each column 

and sort it in order to retrieve the ranks and then join the columns back into an RDD[Vector], 

which is fairly costly. Cache the input Dataset before calling corr with `method = 'spearman'` 

to avoid recomputing the common lineage. 

""" 

@staticmethod 

def corr(dataset, column, method="pearson"): 

""" 

Compute the correlation matrix with specified method using dataset. 

 

.. versionadded:: 2.2.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

A DataFrame. 

column : str 

The name of the column of vectors for which the correlation coefficient needs 

to be computed. This must be a column of the dataset, and it must contain 

Vector objects. 

method : str, optional 

String specifying the method to use for computing correlation. 

Supported: `pearson` (default), `spearman`. 

 

Returns 

------- 

A DataFrame that contains the correlation matrix of the column of vectors. This 

DataFrame contains a single row and a single column of name `METHODNAME(COLUMN)`. 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import DenseMatrix, Vectors 

>>> from pyspark.ml.stat import Correlation 

>>> dataset = [[Vectors.dense([1, 0, 0, -2])], 

... [Vectors.dense([4, 5, 0, 3])], 

... [Vectors.dense([6, 7, 0, 8])], 

... [Vectors.dense([9, 0, 0, 1])]] 

>>> dataset = spark.createDataFrame(dataset, ['features']) 

>>> pearsonCorr = Correlation.corr(dataset, 'features', 'pearson').collect()[0][0] 

>>> print(str(pearsonCorr).replace('nan', 'NaN')) 

DenseMatrix([[ 1. , 0.0556..., NaN, 0.4004...], 

[ 0.0556..., 1. , NaN, 0.9135...], 

[ NaN, NaN, 1. , NaN], 

[ 0.4004..., 0.9135..., NaN, 1. ]]) 

>>> spearmanCorr = Correlation.corr(dataset, 'features', method='spearman').collect()[0][0] 

>>> print(str(spearmanCorr).replace('nan', 'NaN')) 

DenseMatrix([[ 1. , 0.1054..., NaN, 0.4 ], 

[ 0.1054..., 1. , NaN, 0.9486... ], 

[ NaN, NaN, 1. , NaN], 

[ 0.4 , 0.9486... , NaN, 1. ]]) 

""" 

sc = SparkContext._active_spark_context 

javaCorrObj = _jvm().org.apache.spark.ml.stat.Correlation 

args = [_py2java(sc, arg) for arg in (dataset, column, method)] 

return _java2py(sc, javaCorrObj.corr(*args)) 

 

 

class KolmogorovSmirnovTest(object): 

""" 

Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled from a continuous 

distribution. 

 

By comparing the largest difference between the empirical cumulative 

distribution of the sample data and the theoretical distribution we can provide a test for the 

the null hypothesis that the sample data comes from that theoretical distribution. 

 

.. versionadded:: 2.4.0 

 

""" 

@staticmethod 

def test(dataset, sampleCol, distName, *params): 

""" 

Conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution 

equality. Currently supports the normal distribution, taking as parameters the mean and 

standard deviation. 

 

.. versionadded:: 2.4.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

a Dataset or a DataFrame containing the sample of data to test. 

sampleCol : str 

Name of sample column in dataset, of any numerical type. 

distName : str 

a `string` name for a theoretical distribution, currently only support "norm". 

params : float 

a list of `float` values specifying the parameters to be used for the theoretical 

distribution. For "norm" distribution, the parameters includes mean and variance. 

 

Returns 

------- 

A DataFrame that contains the Kolmogorov-Smirnov test result for the input sampled data. 

This DataFrame will contain a single Row with the following fields: 

 

- `pValue: Double` 

- `statistic: Double` 

 

Examples 

-------- 

>>> from pyspark.ml.stat import KolmogorovSmirnovTest 

>>> dataset = [[-1.0], [0.0], [1.0]] 

>>> dataset = spark.createDataFrame(dataset, ['sample']) 

>>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm', 0.0, 1.0).first() 

>>> round(ksResult.pValue, 3) 

1.0 

>>> round(ksResult.statistic, 3) 

0.175 

>>> dataset = [[2.0], [3.0], [4.0]] 

>>> dataset = spark.createDataFrame(dataset, ['sample']) 

>>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm', 3.0, 1.0).first() 

>>> round(ksResult.pValue, 3) 

1.0 

>>> round(ksResult.statistic, 3) 

0.175 

""" 

sc = SparkContext._active_spark_context 

javaTestObj = _jvm().org.apache.spark.ml.stat.KolmogorovSmirnovTest 

dataset = _py2java(sc, dataset) 

params = [float(param) for param in params] 

return _java2py(sc, javaTestObj.test(dataset, sampleCol, distName, 

_jvm().PythonUtils.toSeq(params))) 

 

 

class Summarizer(object): 

""" 

Tools for vectorized statistics on MLlib Vectors. 

The methods in this package provide various statistics for Vectors contained inside DataFrames. 

This class lets users pick the statistics they would like to extract for a given column. 

 

.. versionadded:: 2.4.0 

 

Examples 

-------- 

>>> from pyspark.ml.stat import Summarizer 

>>> from pyspark.sql import Row 

>>> from pyspark.ml.linalg import Vectors 

>>> summarizer = Summarizer.metrics("mean", "count") 

>>> df = sc.parallelize([Row(weight=1.0, features=Vectors.dense(1.0, 1.0, 1.0)), 

... Row(weight=0.0, features=Vectors.dense(1.0, 2.0, 3.0))]).toDF() 

>>> df.select(summarizer.summary(df.features, df.weight)).show(truncate=False) 

+-----------------------------------+ 

|aggregate_metrics(features, weight)| 

+-----------------------------------+ 

|{[1.0,1.0,1.0], 1} | 

+-----------------------------------+ 

<BLANKLINE> 

>>> df.select(summarizer.summary(df.features)).show(truncate=False) 

+--------------------------------+ 

|aggregate_metrics(features, 1.0)| 

+--------------------------------+ 

|{[1.0,1.5,2.0], 2} | 

+--------------------------------+ 

<BLANKLINE> 

>>> df.select(Summarizer.mean(df.features, df.weight)).show(truncate=False) 

+--------------+ 

|mean(features)| 

+--------------+ 

|[1.0,1.0,1.0] | 

+--------------+ 

<BLANKLINE> 

>>> df.select(Summarizer.mean(df.features)).show(truncate=False) 

+--------------+ 

|mean(features)| 

+--------------+ 

|[1.0,1.5,2.0] | 

+--------------+ 

<BLANKLINE> 

""" 

@staticmethod 

@since("2.4.0") 

def mean(col, weightCol=None): 

""" 

return a column of mean summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "mean") 

 

@staticmethod 

@since("3.0.0") 

def sum(col, weightCol=None): 

""" 

return a column of sum summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "sum") 

 

@staticmethod 

@since("2.4.0") 

def variance(col, weightCol=None): 

""" 

return a column of variance summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "variance") 

 

@staticmethod 

@since("3.0.0") 

def std(col, weightCol=None): 

""" 

return a column of std summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "std") 

 

@staticmethod 

@since("2.4.0") 

def count(col, weightCol=None): 

""" 

return a column of count summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "count") 

 

@staticmethod 

@since("2.4.0") 

def numNonZeros(col, weightCol=None): 

""" 

return a column of numNonZero summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "numNonZeros") 

 

@staticmethod 

@since("2.4.0") 

def max(col, weightCol=None): 

""" 

return a column of max summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "max") 

 

@staticmethod 

@since("2.4.0") 

def min(col, weightCol=None): 

""" 

return a column of min summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "min") 

 

@staticmethod 

@since("2.4.0") 

def normL1(col, weightCol=None): 

""" 

return a column of normL1 summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "normL1") 

 

@staticmethod 

@since("2.4.0") 

def normL2(col, weightCol=None): 

""" 

return a column of normL2 summary 

""" 

return Summarizer._get_single_metric(col, weightCol, "normL2") 

 

@staticmethod 

def _check_param(featuresCol, weightCol): 

if weightCol is None: 

weightCol = lit(1.0) 

364 ↛ 365line 364 didn't jump to line 365, because the condition on line 364 was never true if not isinstance(featuresCol, Column) or not isinstance(weightCol, Column): 

raise TypeError("featureCol and weightCol should be a Column") 

return featuresCol, weightCol 

 

@staticmethod 

def _get_single_metric(col, weightCol, metric): 

col, weightCol = Summarizer._check_param(col, weightCol) 

return Column(JavaWrapper._new_java_obj("org.apache.spark.ml.stat.Summarizer." + metric, 

col._jc, weightCol._jc)) 

 

@staticmethod 

def metrics(*metrics): 

""" 

Given a list of metrics, provides a builder that it turns computes metrics from a column. 

 

See the documentation of :py:class:`Summarizer` for an example. 

 

The following metrics are accepted (case sensitive): 

- mean: a vector that contains the coefficient-wise mean. 

- sum: a vector that contains the coefficient-wise sum. 

- variance: a vector tha contains the coefficient-wise variance. 

- std: a vector tha contains the coefficient-wise standard deviation. 

- count: the count of all vectors seen. 

- numNonzeros: a vector with the number of non-zeros for each coefficients 

- max: the maximum for each coefficient. 

- min: the minimum for each coefficient. 

- normL2: the Euclidean norm for each coefficient. 

- normL1: the L1 norm of each coefficient (sum of the absolute values). 

 

.. versionadded:: 2.4.0 

 

Notes 

----- 

Currently, the performance of this interface is about 2x~3x slower than using the RDD 

interface. 

 

Examples 

-------- 

metrics : str 

metrics that can be provided. 

 

Returns 

------- 

:py:class:`pyspark.ml.stat.SummaryBuilder` 

""" 

sc = SparkContext._active_spark_context 

js = JavaWrapper._new_java_obj("org.apache.spark.ml.stat.Summarizer.metrics", 

_to_seq(sc, metrics)) 

return SummaryBuilder(js) 

 

 

class SummaryBuilder(JavaWrapper): 

""" 

A builder object that provides summary statistics about a given column. 

 

Users should not directly create such builders, but instead use one of the methods in 

:py:class:`pyspark.ml.stat.Summarizer` 

 

.. versionadded:: 2.4.0 

 

""" 

def __init__(self, jSummaryBuilder): 

super(SummaryBuilder, self).__init__(jSummaryBuilder) 

 

def summary(self, featuresCol, weightCol=None): 

""" 

Returns an aggregate object that contains the summary of the column with the requested 

metrics. 

 

.. versionadded:: 2.4.0 

 

Parameters 

---------- 

featuresCol : str 

a column that contains features Vector object. 

weightCol : str, optional 

a column that contains weight value. Default weight is 1.0. 

 

Returns 

------- 

:py:class:`pyspark.sql.Column` 

an aggregate column that contains the statistics. The exact content of this 

structure is determined during the creation of the builder. 

""" 

featuresCol, weightCol = Summarizer._check_param(featuresCol, weightCol) 

return Column(self._java_obj.summary(featuresCol._jc, weightCol._jc)) 

 

 

class MultivariateGaussian(object): 

"""Represents a (mean, cov) tuple 

 

.. versionadded:: 3.0.0 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import DenseMatrix, Vectors 

>>> m = MultivariateGaussian(Vectors.dense([11,12]), DenseMatrix(2, 2, (1.0, 3.0, 5.0, 2.0))) 

>>> (m.mean, m.cov.toArray()) 

(DenseVector([11.0, 12.0]), array([[ 1., 5.], 

[ 3., 2.]])) 

""" 

def __init__(self, mean, cov): 

self.mean = mean 

self.cov = cov 

 

 

if __name__ == "__main__": 

import doctest 

import numpy 

import pyspark.ml.stat 

from pyspark.sql import SparkSession 

try: 

# Numpy 1.14+ changed it's string format. 

numpy.set_printoptions(legacy='1.13') 

except TypeError: 

pass 

 

globs = pyspark.ml.stat.__dict__.copy() 

# The small batch size here ensures that we see multiple batches, 

# even in these small test examples: 

spark = SparkSession.builder \ 

.master("local[2]") \ 

.appName("ml.stat tests") \ 

.getOrCreate() 

sc = spark.sparkContext 

globs['sc'] = sc 

globs['spark'] = spark 

 

failure_count, test_count = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

spark.stop() 

494 ↛ 495line 494 didn't jump to line 495, because the condition on line 494 was never true if failure_count: 

sys.exit(-1)