Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

import sys 

 

from abc import ABCMeta 

 

from pyspark import keyword_only, since 

from pyspark.ml import Predictor, PredictionModel 

from pyspark.ml.base import _PredictorParams 

from pyspark.ml.param.shared import HasFeaturesCol, HasLabelCol, HasPredictionCol, HasWeightCol, \ 

Param, Params, TypeConverters, HasMaxIter, HasTol, HasFitIntercept, HasAggregationDepth, \ 

HasMaxBlockSizeInMB, HasRegParam, HasSolver, HasStepSize, HasSeed, HasElasticNetParam, \ 

HasStandardization, HasLoss, HasVarianceCol 

from pyspark.ml.tree import _DecisionTreeModel, _DecisionTreeParams, \ 

_TreeEnsembleModel, _RandomForestParams, _GBTParams, _TreeRegressorParams 

from pyspark.ml.util import JavaMLWritable, JavaMLReadable, HasTrainingSummary, \ 

GeneralJavaMLWritable 

from pyspark.ml.wrapper import JavaEstimator, JavaModel, \ 

JavaPredictor, JavaPredictionModel, JavaWrapper 

from pyspark.ml.common import inherit_doc 

from pyspark.sql import DataFrame 

 

 

__all__ = ['AFTSurvivalRegression', 'AFTSurvivalRegressionModel', 

'DecisionTreeRegressor', 'DecisionTreeRegressionModel', 

'GBTRegressor', 'GBTRegressionModel', 

'GeneralizedLinearRegression', 'GeneralizedLinearRegressionModel', 

'GeneralizedLinearRegressionSummary', 'GeneralizedLinearRegressionTrainingSummary', 

'IsotonicRegression', 'IsotonicRegressionModel', 

'LinearRegression', 'LinearRegressionModel', 

'LinearRegressionSummary', 'LinearRegressionTrainingSummary', 

'RandomForestRegressor', 'RandomForestRegressionModel', 

'FMRegressor', 'FMRegressionModel'] 

 

 

class Regressor(Predictor, _PredictorParams, metaclass=ABCMeta): 

""" 

Regressor for regression tasks. 

 

.. versionadded:: 3.0.0 

""" 

pass 

 

 

class RegressionModel(PredictionModel, _PredictorParams, metaclass=ABCMeta): 

""" 

Model produced by a ``Regressor``. 

 

.. versionadded:: 3.0.0 

""" 

pass 

 

 

class _JavaRegressor(Regressor, JavaPredictor, metaclass=ABCMeta): 

""" 

Java Regressor for regression tasks. 

 

.. versionadded:: 3.0.0 

""" 

pass 

 

 

class _JavaRegressionModel(RegressionModel, JavaPredictionModel, metaclass=ABCMeta): 

""" 

Java Model produced by a ``_JavaRegressor``. 

To be mixed in with :class:`pyspark.ml.JavaModel` 

 

.. versionadded:: 3.0.0 

""" 

pass 

 

 

class _LinearRegressionParams(_PredictorParams, HasRegParam, HasElasticNetParam, HasMaxIter, 

HasTol, HasFitIntercept, HasStandardization, HasWeightCol, HasSolver, 

HasAggregationDepth, HasLoss, HasMaxBlockSizeInMB): 

""" 

Params for :py:class:`LinearRegression` and :py:class:`LinearRegressionModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + 

"options: auto, normal, l-bfgs.", typeConverter=TypeConverters.toString) 

 

loss = Param(Params._dummy(), "loss", "The loss function to be optimized. Supported " + 

"options: squaredError, huber.", typeConverter=TypeConverters.toString) 

 

epsilon = Param(Params._dummy(), "epsilon", "The shape parameter to control the amount of " + 

"robustness. Must be > 1.0. Only valid when loss is huber", 

typeConverter=TypeConverters.toFloat) 

 

def __init__(self, *args): 

super(_LinearRegressionParams, self).__init__(*args) 

self._setDefault(maxIter=100, regParam=0.0, tol=1e-6, loss="squaredError", epsilon=1.35, 

maxBlockSizeInMB=0.0) 

 

@since("2.3.0") 

def getEpsilon(self): 

""" 

Gets the value of epsilon or its default value. 

""" 

return self.getOrDefault(self.epsilon) 

 

 

@inherit_doc 

class LinearRegression(_JavaRegressor, _LinearRegressionParams, JavaMLWritable, JavaMLReadable): 

""" 

Linear regression. 

 

The learning objective is to minimize the specified loss function, with regularization. 

This supports two kinds of loss: 

 

* squaredError (a.k.a squared loss) 

* huber (a hybrid of squared error for relatively small errors and absolute error for \ 

relatively large ones, and we estimate the scale parameter from training data) 

 

This supports multiple types of regularization: 

 

* none (a.k.a. ordinary least squares) 

* L2 (ridge regression) 

* L1 (Lasso) 

* L2 + L1 (elastic net) 

 

.. versionadded:: 1.4.0 

 

Notes 

----- 

Fitting with huber loss only supports none and L2 regularization. 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import Vectors 

>>> df = spark.createDataFrame([ 

... (1.0, 2.0, Vectors.dense(1.0)), 

... (0.0, 2.0, Vectors.sparse(1, [], []))], ["label", "weight", "features"]) 

>>> lr = LinearRegression(regParam=0.0, solver="normal", weightCol="weight") 

>>> lr.setMaxIter(5) 

LinearRegression... 

>>> lr.getMaxIter() 

5 

>>> lr.setRegParam(0.1) 

LinearRegression... 

>>> lr.getRegParam() 

0.1 

>>> lr.setRegParam(0.0) 

LinearRegression... 

>>> model = lr.fit(df) 

>>> model.setFeaturesCol("features") 

LinearRegressionModel... 

>>> model.setPredictionCol("newPrediction") 

LinearRegressionModel... 

>>> model.getMaxIter() 

5 

>>> model.getMaxBlockSizeInMB() 

0.0 

>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) 

>>> abs(model.predict(test0.head().features) - (-1.0)) < 0.001 

True 

>>> abs(model.transform(test0).head().newPrediction - (-1.0)) < 0.001 

True 

>>> abs(model.coefficients[0] - 1.0) < 0.001 

True 

>>> abs(model.intercept - 0.0) < 0.001 

True 

>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) 

>>> abs(model.transform(test1).head().newPrediction - 1.0) < 0.001 

True 

>>> lr.setParams(featuresCol="vector") 

LinearRegression... 

>>> lr_path = temp_path + "/lr" 

>>> lr.save(lr_path) 

>>> lr2 = LinearRegression.load(lr_path) 

>>> lr2.getMaxIter() 

5 

>>> model_path = temp_path + "/lr_model" 

>>> model.save(model_path) 

>>> model2 = LinearRegressionModel.load(model_path) 

>>> model.coefficients[0] == model2.coefficients[0] 

True 

>>> model.intercept == model2.intercept 

True 

>>> model.transform(test0).take(1) == model2.transform(test0).take(1) 

True 

>>> model.numFeatures 

1 

>>> model.write().format("pmml").save(model_path + "_2") 

""" 

 

@keyword_only 

def __init__(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, 

standardization=True, solver="auto", weightCol=None, aggregationDepth=2, 

loss="squaredError", epsilon=1.35, maxBlockSizeInMB=0.0): 

""" 

__init__(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \ 

standardization=True, solver="auto", weightCol=None, aggregationDepth=2, \ 

loss="squaredError", epsilon=1.35, maxBlockSizeInMB=0.0) 

""" 

super(LinearRegression, self).__init__() 

self._java_obj = self._new_java_obj( 

"org.apache.spark.ml.regression.LinearRegression", self.uid) 

kwargs = self._input_kwargs 

self.setParams(**kwargs) 

 

@keyword_only 

@since("1.4.0") 

def setParams(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, 

standardization=True, solver="auto", weightCol=None, aggregationDepth=2, 

loss="squaredError", epsilon=1.35, maxBlockSizeInMB=0.0): 

""" 

setParams(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \ 

standardization=True, solver="auto", weightCol=None, aggregationDepth=2, \ 

loss="squaredError", epsilon=1.35, maxBlockSizeInMB=0.0) 

Sets params for linear regression. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return LinearRegressionModel(java_model) 

 

@since("2.3.0") 

def setEpsilon(self, value): 

""" 

Sets the value of :py:attr:`epsilon`. 

""" 

return self._set(epsilon=value) 

 

def setMaxIter(self, value): 

""" 

Sets the value of :py:attr:`maxIter`. 

""" 

return self._set(maxIter=value) 

 

def setRegParam(self, value): 

""" 

Sets the value of :py:attr:`regParam`. 

""" 

return self._set(regParam=value) 

 

def setTol(self, value): 

""" 

Sets the value of :py:attr:`tol`. 

""" 

return self._set(tol=value) 

 

def setElasticNetParam(self, value): 

""" 

Sets the value of :py:attr:`elasticNetParam`. 

""" 

return self._set(elasticNetParam=value) 

 

def setFitIntercept(self, value): 

""" 

Sets the value of :py:attr:`fitIntercept`. 

""" 

return self._set(fitIntercept=value) 

 

def setStandardization(self, value): 

""" 

Sets the value of :py:attr:`standardization`. 

""" 

return self._set(standardization=value) 

 

def setWeightCol(self, value): 

""" 

Sets the value of :py:attr:`weightCol`. 

""" 

return self._set(weightCol=value) 

 

def setSolver(self, value): 

""" 

Sets the value of :py:attr:`solver`. 

""" 

return self._set(solver=value) 

 

def setAggregationDepth(self, value): 

""" 

Sets the value of :py:attr:`aggregationDepth`. 

""" 

return self._set(aggregationDepth=value) 

 

def setLoss(self, value): 

""" 

Sets the value of :py:attr:`loss`. 

""" 

return self._set(lossType=value) 

 

@since("3.1.0") 

def setMaxBlockSizeInMB(self, value): 

""" 

Sets the value of :py:attr:`maxBlockSizeInMB`. 

""" 

return self._set(maxBlockSizeInMB=value) 

 

 

class LinearRegressionModel(_JavaRegressionModel, _LinearRegressionParams, GeneralJavaMLWritable, 

JavaMLReadable, HasTrainingSummary): 

""" 

Model fitted by :class:`LinearRegression`. 

 

.. versionadded:: 1.4.0 

""" 

 

@property 

@since("2.0.0") 

def coefficients(self): 

""" 

Model coefficients. 

""" 

return self._call_java("coefficients") 

 

@property 

@since("1.4.0") 

def intercept(self): 

""" 

Model intercept. 

""" 

return self._call_java("intercept") 

 

@property 

@since("2.3.0") 

def scale(self): 

r""" 

The value by which :math:`\|y - X'w\|` is scaled down when loss is "huber", otherwise 1.0. 

""" 

return self._call_java("scale") 

 

@property 

@since("2.0.0") 

def summary(self): 

""" 

Gets summary (residuals, MSE, r-squared ) of model on 

training set. An exception is thrown if 

`trainingSummary is None`. 

""" 

355 ↛ 358line 355 didn't jump to line 358, because the condition on line 355 was never false if self.hasSummary: 

return LinearRegressionTrainingSummary(super(LinearRegressionModel, self).summary) 

else: 

raise RuntimeError("No training summary available for this %s" % 

self.__class__.__name__) 

 

def evaluate(self, dataset): 

""" 

Evaluates the model on a test dataset. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

Test dataset to evaluate model on, where dataset is an 

instance of :py:class:`pyspark.sql.DataFrame` 

""" 

if not isinstance(dataset, DataFrame): 

raise TypeError("dataset must be a DataFrame but got %s." % type(dataset)) 

java_lr_summary = self._call_java("evaluate", dataset) 

return LinearRegressionSummary(java_lr_summary) 

 

 

class LinearRegressionSummary(JavaWrapper): 

""" 

Linear regression results evaluated on a dataset. 

 

.. versionadded:: 2.0.0 

""" 

 

@property 

@since("2.0.0") 

def predictions(self): 

""" 

Dataframe outputted by the model's `transform` method. 

""" 

return self._call_java("predictions") 

 

@property 

@since("2.0.0") 

def predictionCol(self): 

""" 

Field in "predictions" which gives the predicted value of 

the label at each instance. 

""" 

return self._call_java("predictionCol") 

 

@property 

@since("2.0.0") 

def labelCol(self): 

""" 

Field in "predictions" which gives the true label of each 

instance. 

""" 

return self._call_java("labelCol") 

 

@property 

@since("2.0.0") 

def featuresCol(self): 

""" 

Field in "predictions" which gives the features of each instance 

as a vector. 

""" 

return self._call_java("featuresCol") 

 

@property 

@since("2.0.0") 

def explainedVariance(self): 

r""" 

Returns the explained variance regression score. 

explainedVariance = :math:`1 - \frac{variance(y - \hat{y})}{variance(y)}` 

 

Notes 

----- 

This ignores instance weights (setting all to 1.0) from 

`LinearRegression.weightCol`. This will change in later Spark 

versions. 

 

For additional information see 

`Explained variation on Wikipedia \ 

<http://en.wikipedia.org/wiki/Explained_variation>`_ 

""" 

return self._call_java("explainedVariance") 

 

@property 

@since("2.0.0") 

def meanAbsoluteError(self): 

""" 

Returns the mean absolute error, which is a risk function 

corresponding to the expected value of the absolute error 

loss or l1-norm loss. 

 

Notes 

----- 

This ignores instance weights (setting all to 1.0) from 

`LinearRegression.weightCol`. This will change in later Spark 

versions. 

""" 

return self._call_java("meanAbsoluteError") 

 

@property 

@since("2.0.0") 

def meanSquaredError(self): 

""" 

Returns the mean squared error, which is a risk function 

corresponding to the expected value of the squared error 

loss or quadratic loss. 

 

Notes 

----- 

This ignores instance weights (setting all to 1.0) from 

`LinearRegression.weightCol`. This will change in later Spark 

versions. 

""" 

return self._call_java("meanSquaredError") 

 

@property 

@since("2.0.0") 

def rootMeanSquaredError(self): 

""" 

Returns the root mean squared error, which is defined as the 

square root of the mean squared error. 

 

Notes 

----- 

This ignores instance weights (setting all to 1.0) from 

`LinearRegression.weightCol`. This will change in later Spark 

versions. 

""" 

return self._call_java("rootMeanSquaredError") 

 

@property 

@since("2.0.0") 

def r2(self): 

""" 

Returns R^2, the coefficient of determination. 

 

Notes 

----- 

This ignores instance weights (setting all to 1.0) from 

`LinearRegression.weightCol`. This will change in later Spark 

versions. 

 

See also `Wikipedia coefficient of determination \ 

<http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ 

""" 

return self._call_java("r2") 

 

@property 

@since("2.4.0") 

def r2adj(self): 

""" 

Returns Adjusted R^2, the adjusted coefficient of determination. 

 

Notes 

----- 

This ignores instance weights (setting all to 1.0) from 

`LinearRegression.weightCol`. This will change in later Spark versions. 

 

`Wikipedia coefficient of determination, Adjusted R^2 \ 

<https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2>`_ 

""" 

return self._call_java("r2adj") 

 

@property 

@since("2.0.0") 

def residuals(self): 

""" 

Residuals (label - predicted value) 

""" 

return self._call_java("residuals") 

 

@property 

@since("2.0.0") 

def numInstances(self): 

""" 

Number of instances in DataFrame predictions 

""" 

return self._call_java("numInstances") 

 

@property 

@since("2.2.0") 

def degreesOfFreedom(self): 

""" 

Degrees of freedom. 

""" 

return self._call_java("degreesOfFreedom") 

 

@property 

@since("2.0.0") 

def devianceResiduals(self): 

""" 

The weighted residuals, the usual residuals rescaled by the 

square root of the instance weights. 

""" 

return self._call_java("devianceResiduals") 

 

@property 

def coefficientStandardErrors(self): 

""" 

Standard error of estimated coefficients and intercept. 

This value is only available when using the "normal" solver. 

 

If :py:attr:`LinearRegression.fitIntercept` is set to True, 

then the last element returned corresponds to the intercept. 

 

.. versionadded:: 2.0.0 

 

See Also 

-------- 

LinearRegression.solver 

""" 

return self._call_java("coefficientStandardErrors") 

 

@property 

def tValues(self): 

""" 

T-statistic of estimated coefficients and intercept. 

This value is only available when using the "normal" solver. 

 

If :py:attr:`LinearRegression.fitIntercept` is set to True, 

then the last element returned corresponds to the intercept. 

 

.. versionadded:: 2.0.0 

 

See Also 

-------- 

LinearRegression.solver 

""" 

return self._call_java("tValues") 

 

@property 

def pValues(self): 

""" 

Two-sided p-value of estimated coefficients and intercept. 

This value is only available when using the "normal" solver. 

 

If :py:attr:`LinearRegression.fitIntercept` is set to True, 

then the last element returned corresponds to the intercept. 

 

.. versionadded:: 2.0.0 

 

See Also 

-------- 

LinearRegression.solver 

""" 

return self._call_java("pValues") 

 

 

@inherit_doc 

class LinearRegressionTrainingSummary(LinearRegressionSummary): 

""" 

Linear regression training results. Currently, the training summary ignores the 

training weights except for the objective trace. 

 

.. versionadded:: 2.0.0 

""" 

 

@property 

def objectiveHistory(self): 

""" 

Objective function (scaled loss + regularization) at each 

iteration. 

This value is only available when using the "l-bfgs" solver. 

 

.. versionadded:: 2.0.0 

 

See Also 

-------- 

LinearRegression.solver 

""" 

return self._call_java("objectiveHistory") 

 

@property 

def totalIterations(self): 

""" 

Number of training iterations until termination. 

This value is only available when using the "l-bfgs" solver. 

 

.. versionadded:: 2.0.0 

 

See Also 

-------- 

LinearRegression.solver 

""" 

return self._call_java("totalIterations") 

 

 

class _IsotonicRegressionParams(HasFeaturesCol, HasLabelCol, HasPredictionCol, HasWeightCol): 

""" 

Params for :py:class:`IsotonicRegression` and :py:class:`IsotonicRegressionModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

isotonic = Param( 

Params._dummy(), "isotonic", 

"whether the output sequence should be isotonic/increasing (true) or" + 

"antitonic/decreasing (false).", typeConverter=TypeConverters.toBoolean) 

featureIndex = Param( 

Params._dummy(), "featureIndex", 

"The index of the feature if featuresCol is a vector column, no effect otherwise.", 

typeConverter=TypeConverters.toInt) 

 

def __init__(self, *args): 

super(_IsotonicRegressionParams, self).__init__(*args) 

self._setDefault(isotonic=True, featureIndex=0) 

 

def getIsotonic(self): 

""" 

Gets the value of isotonic or its default value. 

""" 

return self.getOrDefault(self.isotonic) 

 

def getFeatureIndex(self): 

""" 

Gets the value of featureIndex or its default value. 

""" 

return self.getOrDefault(self.featureIndex) 

 

 

@inherit_doc 

class IsotonicRegression(JavaEstimator, _IsotonicRegressionParams, HasWeightCol, 

JavaMLWritable, JavaMLReadable): 

""" 

Currently implemented using parallelized pool adjacent violators algorithm. 

Only univariate (single feature) algorithm supported. 

 

.. versionadded:: 1.6.0 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import Vectors 

>>> df = spark.createDataFrame([ 

... (1.0, Vectors.dense(1.0)), 

... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) 

>>> ir = IsotonicRegression() 

>>> model = ir.fit(df) 

>>> model.setFeaturesCol("features") 

IsotonicRegressionModel... 

>>> model.numFeatures 

1 

>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) 

>>> model.transform(test0).head().prediction 

0.0 

>>> model.predict(test0.head().features[model.getFeatureIndex()]) 

0.0 

>>> model.boundaries 

DenseVector([0.0, 1.0]) 

>>> ir_path = temp_path + "/ir" 

>>> ir.save(ir_path) 

>>> ir2 = IsotonicRegression.load(ir_path) 

>>> ir2.getIsotonic() 

True 

>>> model_path = temp_path + "/ir_model" 

>>> model.save(model_path) 

>>> model2 = IsotonicRegressionModel.load(model_path) 

>>> model.boundaries == model2.boundaries 

True 

>>> model.predictions == model2.predictions 

True 

>>> model.transform(test0).take(1) == model2.transform(test0).take(1) 

True 

""" 

@keyword_only 

def __init__(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

weightCol=None, isotonic=True, featureIndex=0): 

""" 

__init__(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

weightCol=None, isotonic=True, featureIndex=0): 

""" 

super(IsotonicRegression, self).__init__() 

self._java_obj = self._new_java_obj( 

"org.apache.spark.ml.regression.IsotonicRegression", self.uid) 

kwargs = self._input_kwargs 

self.setParams(**kwargs) 

 

@keyword_only 

def setParams(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

weightCol=None, isotonic=True, featureIndex=0): 

""" 

setParams(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

weightCol=None, isotonic=True, featureIndex=0): 

Set the params for IsotonicRegression. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return IsotonicRegressionModel(java_model) 

 

def setIsotonic(self, value): 

""" 

Sets the value of :py:attr:`isotonic`. 

""" 

return self._set(isotonic=value) 

 

def setFeatureIndex(self, value): 

""" 

Sets the value of :py:attr:`featureIndex`. 

""" 

return self._set(featureIndex=value) 

 

@since("1.6.0") 

def setFeaturesCol(self, value): 

""" 

Sets the value of :py:attr:`featuresCol`. 

""" 

return self._set(featuresCol=value) 

 

@since("1.6.0") 

def setPredictionCol(self, value): 

""" 

Sets the value of :py:attr:`predictionCol`. 

""" 

return self._set(predictionCol=value) 

 

@since("1.6.0") 

def setLabelCol(self, value): 

""" 

Sets the value of :py:attr:`labelCol`. 

""" 

return self._set(labelCol=value) 

 

@since("1.6.0") 

def setWeightCol(self, value): 

""" 

Sets the value of :py:attr:`weightCol`. 

""" 

return self._set(weightCol=value) 

 

 

class IsotonicRegressionModel(JavaModel, _IsotonicRegressionParams, JavaMLWritable, 

JavaMLReadable): 

""" 

Model fitted by :class:`IsotonicRegression`. 

 

.. versionadded:: 1.6.0 

""" 

 

@since("3.0.0") 

def setFeaturesCol(self, value): 

""" 

Sets the value of :py:attr:`featuresCol`. 

""" 

return self._set(featuresCol=value) 

 

@since("3.0.0") 

def setPredictionCol(self, value): 

""" 

Sets the value of :py:attr:`predictionCol`. 

""" 

return self._set(predictionCol=value) 

 

def setFeatureIndex(self, value): 

""" 

Sets the value of :py:attr:`featureIndex`. 

""" 

return self._set(featureIndex=value) 

 

@property 

@since("1.6.0") 

def boundaries(self): 

""" 

Boundaries in increasing order for which predictions are known. 

""" 

return self._call_java("boundaries") 

 

@property 

@since("1.6.0") 

def predictions(self): 

""" 

Predictions associated with the boundaries at the same index, monotone because of isotonic 

regression. 

""" 

return self._call_java("predictions") 

 

@property 

@since("3.0.0") 

def numFeatures(self): 

""" 

Returns the number of features the model was trained on. If unknown, returns -1 

""" 

return self._call_java("numFeatures") 

 

@since("3.0.0") 

def predict(self, value): 

""" 

Predict label for the given features. 

""" 

return self._call_java("predict", value) 

 

 

class _DecisionTreeRegressorParams(_DecisionTreeParams, _TreeRegressorParams, HasVarianceCol): 

""" 

Params for :py:class:`DecisionTreeRegressor` and :py:class:`DecisionTreeRegressionModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

def __init__(self, *args): 

super(_DecisionTreeRegressorParams, self).__init__(*args) 

self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, 

impurity="variance", leafCol="", minWeightFractionPerNode=0.0) 

 

 

@inherit_doc 

class DecisionTreeRegressor(_JavaRegressor, _DecisionTreeRegressorParams, JavaMLWritable, 

JavaMLReadable): 

""" 

`Decision tree <http://en.wikipedia.org/wiki/Decision_tree_learning>`_ 

learning algorithm for regression. 

It supports both continuous and categorical features. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import Vectors 

>>> df = spark.createDataFrame([ 

... (1.0, Vectors.dense(1.0)), 

... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) 

>>> dt = DecisionTreeRegressor(maxDepth=2) 

>>> dt.setVarianceCol("variance") 

DecisionTreeRegressor... 

>>> model = dt.fit(df) 

>>> model.getVarianceCol() 

'variance' 

>>> model.setLeafCol("leafId") 

DecisionTreeRegressionModel... 

>>> model.depth 

1 

>>> model.numNodes 

3 

>>> model.featureImportances 

SparseVector(1, {0: 1.0}) 

>>> model.numFeatures 

1 

>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) 

>>> model.predict(test0.head().features) 

0.0 

>>> result = model.transform(test0).head() 

>>> result.prediction 

0.0 

>>> model.predictLeaf(test0.head().features) 

0.0 

>>> result.leafId 

0.0 

>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) 

>>> model.transform(test1).head().prediction 

1.0 

>>> dtr_path = temp_path + "/dtr" 

>>> dt.save(dtr_path) 

>>> dt2 = DecisionTreeRegressor.load(dtr_path) 

>>> dt2.getMaxDepth() 

2 

>>> model_path = temp_path + "/dtr_model" 

>>> model.save(model_path) 

>>> model2 = DecisionTreeRegressionModel.load(model_path) 

>>> model.numNodes == model2.numNodes 

True 

>>> model.depth == model2.depth 

True 

>>> model.transform(test1).head().variance 

0.0 

>>> model.transform(test0).take(1) == model2.transform(test0).take(1) 

True 

>>> df3 = spark.createDataFrame([ 

... (1.0, 0.2, Vectors.dense(1.0)), 

... (1.0, 0.8, Vectors.dense(1.0)), 

... (0.0, 1.0, Vectors.sparse(1, [], []))], ["label", "weight", "features"]) 

>>> dt3 = DecisionTreeRegressor(maxDepth=2, weightCol="weight", varianceCol="variance") 

>>> model3 = dt3.fit(df3) 

>>> print(model3.toDebugString) 

DecisionTreeRegressionModel...depth=1, numNodes=3... 

""" 

 

@keyword_only 

def __init__(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", 

seed=None, varianceCol=None, weightCol=None, leafCol="", 

minWeightFractionPerNode=0.0): 

""" 

__init__(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ 

impurity="variance", seed=None, varianceCol=None, weightCol=None, \ 

leafCol="", minWeightFractionPerNode=0.0) 

""" 

super(DecisionTreeRegressor, self).__init__() 

self._java_obj = self._new_java_obj( 

"org.apache.spark.ml.regression.DecisionTreeRegressor", self.uid) 

kwargs = self._input_kwargs 

self.setParams(**kwargs) 

 

@keyword_only 

@since("1.4.0") 

def setParams(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, 

impurity="variance", seed=None, varianceCol=None, weightCol=None, 

leafCol="", minWeightFractionPerNode=0.0): 

""" 

setParams(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ 

impurity="variance", seed=None, varianceCol=None, weightCol=None, \ 

leafCol="", minWeightFractionPerNode=0.0) 

Sets params for the DecisionTreeRegressor. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return DecisionTreeRegressionModel(java_model) 

 

@since("1.4.0") 

def setMaxDepth(self, value): 

""" 

Sets the value of :py:attr:`maxDepth`. 

""" 

return self._set(maxDepth=value) 

 

@since("1.4.0") 

def setMaxBins(self, value): 

""" 

Sets the value of :py:attr:`maxBins`. 

""" 

return self._set(maxBins=value) 

 

@since("1.4.0") 

def setMinInstancesPerNode(self, value): 

""" 

Sets the value of :py:attr:`minInstancesPerNode`. 

""" 

return self._set(minInstancesPerNode=value) 

 

@since("3.0.0") 

def setMinWeightFractionPerNode(self, value): 

""" 

Sets the value of :py:attr:`minWeightFractionPerNode`. 

""" 

return self._set(minWeightFractionPerNode=value) 

 

@since("1.4.0") 

def setMinInfoGain(self, value): 

""" 

Sets the value of :py:attr:`minInfoGain`. 

""" 

return self._set(minInfoGain=value) 

 

@since("1.4.0") 

def setMaxMemoryInMB(self, value): 

""" 

Sets the value of :py:attr:`maxMemoryInMB`. 

""" 

return self._set(maxMemoryInMB=value) 

 

@since("1.4.0") 

def setCacheNodeIds(self, value): 

""" 

Sets the value of :py:attr:`cacheNodeIds`. 

""" 

return self._set(cacheNodeIds=value) 

 

@since("1.4.0") 

def setImpurity(self, value): 

""" 

Sets the value of :py:attr:`impurity`. 

""" 

return self._set(impurity=value) 

 

@since("1.4.0") 

def setCheckpointInterval(self, value): 

""" 

Sets the value of :py:attr:`checkpointInterval`. 

""" 

return self._set(checkpointInterval=value) 

 

def setSeed(self, value): 

""" 

Sets the value of :py:attr:`seed`. 

""" 

return self._set(seed=value) 

 

@since("3.0.0") 

def setWeightCol(self, value): 

""" 

Sets the value of :py:attr:`weightCol`. 

""" 

return self._set(weightCol=value) 

 

@since("2.0.0") 

def setVarianceCol(self, value): 

""" 

Sets the value of :py:attr:`varianceCol`. 

""" 

return self._set(varianceCol=value) 

 

 

@inherit_doc 

class DecisionTreeRegressionModel( 

_JavaRegressionModel, _DecisionTreeModel, _DecisionTreeRegressorParams, 

JavaMLWritable, JavaMLReadable 

): 

""" 

Model fitted by :class:`DecisionTreeRegressor`. 

 

.. versionadded:: 1.4.0 

""" 

 

@since("3.0.0") 

def setVarianceCol(self, value): 

""" 

Sets the value of :py:attr:`varianceCol`. 

""" 

return self._set(varianceCol=value) 

 

@property 

def featureImportances(self): 

""" 

Estimate of the importance of each feature. 

 

This generalizes the idea of "Gini" importance to other losses, 

following the explanation of Gini importance from "Random Forests" documentation 

by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn. 

 

This feature importance is calculated as follows: 

- importance(feature j) = sum (over nodes which split on feature j) of the gain, 

where gain is scaled by the number of instances passing through node 

- Normalize importances for tree to sum to 1. 

 

.. versionadded:: 2.0.0 

 

Notes 

----- 

Feature importance for single decision trees can have high variance due to 

correlated predictor variables. Consider using a :py:class:`RandomForestRegressor` 

to determine feature importance instead. 

""" 

return self._call_java("featureImportances") 

 

 

class _RandomForestRegressorParams(_RandomForestParams, _TreeRegressorParams): 

""" 

Params for :py:class:`RandomForestRegressor` and :py:class:`RandomForestRegressionModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

def __init__(self, *args): 

super(_RandomForestRegressorParams, self).__init__(*args) 

self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, 

impurity="variance", subsamplingRate=1.0, numTrees=20, 

featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0, 

bootstrap=True) 

 

 

@inherit_doc 

class RandomForestRegressor(_JavaRegressor, _RandomForestRegressorParams, JavaMLWritable, 

JavaMLReadable): 

""" 

`Random Forest <http://en.wikipedia.org/wiki/Random_forest>`_ 

learning algorithm for regression. 

It supports both continuous and categorical features. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> from numpy import allclose 

>>> from pyspark.ml.linalg import Vectors 

>>> df = spark.createDataFrame([ 

... (1.0, Vectors.dense(1.0)), 

... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) 

>>> rf = RandomForestRegressor(numTrees=2, maxDepth=2) 

>>> rf.getMinWeightFractionPerNode() 

0.0 

>>> rf.setSeed(42) 

RandomForestRegressor... 

>>> model = rf.fit(df) 

>>> model.getBootstrap() 

True 

>>> model.getSeed() 

42 

>>> model.setLeafCol("leafId") 

RandomForestRegressionModel... 

>>> model.featureImportances 

SparseVector(1, {0: 1.0}) 

>>> allclose(model.treeWeights, [1.0, 1.0]) 

True 

>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) 

>>> model.predict(test0.head().features) 

0.0 

>>> model.predictLeaf(test0.head().features) 

DenseVector([0.0, 0.0]) 

>>> result = model.transform(test0).head() 

>>> result.prediction 

0.0 

>>> result.leafId 

DenseVector([0.0, 0.0]) 

>>> model.numFeatures 

1 

>>> model.trees 

[DecisionTreeRegressionModel...depth=..., DecisionTreeRegressionModel...] 

>>> model.getNumTrees 

2 

>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) 

>>> model.transform(test1).head().prediction 

0.5 

>>> rfr_path = temp_path + "/rfr" 

>>> rf.save(rfr_path) 

>>> rf2 = RandomForestRegressor.load(rfr_path) 

>>> rf2.getNumTrees() 

2 

>>> model_path = temp_path + "/rfr_model" 

>>> model.save(model_path) 

>>> model2 = RandomForestRegressionModel.load(model_path) 

>>> model.featureImportances == model2.featureImportances 

True 

>>> model.transform(test0).take(1) == model2.transform(test0).take(1) 

True 

""" 

 

@keyword_only 

def __init__(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, 

impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, 

featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0, 

weightCol=None, bootstrap=True): 

""" 

__init__(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ 

impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, \ 

featureSubsetStrategy="auto", leafCol=", minWeightFractionPerNode=0.0", \ 

weightCol=None, bootstrap=True) 

""" 

super(RandomForestRegressor, self).__init__() 

self._java_obj = self._new_java_obj( 

"org.apache.spark.ml.regression.RandomForestRegressor", self.uid) 

kwargs = self._input_kwargs 

self.setParams(**kwargs) 

 

@keyword_only 

@since("1.4.0") 

def setParams(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, 

impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, 

featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0, 

weightCol=None, bootstrap=True): 

""" 

setParams(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ 

maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ 

impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, \ 

featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0, \ 

weightCol=None, bootstrap=True) 

Sets params for linear regression. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return RandomForestRegressionModel(java_model) 

 

def setMaxDepth(self, value): 

""" 

Sets the value of :py:attr:`maxDepth`. 

""" 

return self._set(maxDepth=value) 

 

def setMaxBins(self, value): 

""" 

Sets the value of :py:attr:`maxBins`. 

""" 

return self._set(maxBins=value) 

 

def setMinInstancesPerNode(self, value): 

""" 

Sets the value of :py:attr:`minInstancesPerNode`. 

""" 

return self._set(minInstancesPerNode=value) 

 

def setMinInfoGain(self, value): 

""" 

Sets the value of :py:attr:`minInfoGain`. 

""" 

return self._set(minInfoGain=value) 

 

def setMaxMemoryInMB(self, value): 

""" 

Sets the value of :py:attr:`maxMemoryInMB`. 

""" 

return self._set(maxMemoryInMB=value) 

 

def setCacheNodeIds(self, value): 

""" 

Sets the value of :py:attr:`cacheNodeIds`. 

""" 

return self._set(cacheNodeIds=value) 

 

@since("1.4.0") 

def setImpurity(self, value): 

""" 

Sets the value of :py:attr:`impurity`. 

""" 

return self._set(impurity=value) 

 

@since("1.4.0") 

def setNumTrees(self, value): 

""" 

Sets the value of :py:attr:`numTrees`. 

""" 

return self._set(numTrees=value) 

 

@since("3.0.0") 

def setBootstrap(self, value): 

""" 

Sets the value of :py:attr:`bootstrap`. 

""" 

return self._set(bootstrap=value) 

 

@since("1.4.0") 

def setSubsamplingRate(self, value): 

""" 

Sets the value of :py:attr:`subsamplingRate`. 

""" 

return self._set(subsamplingRate=value) 

 

@since("2.4.0") 

def setFeatureSubsetStrategy(self, value): 

""" 

Sets the value of :py:attr:`featureSubsetStrategy`. 

""" 

return self._set(featureSubsetStrategy=value) 

 

def setCheckpointInterval(self, value): 

""" 

Sets the value of :py:attr:`checkpointInterval`. 

""" 

return self._set(checkpointInterval=value) 

 

def setSeed(self, value): 

""" 

Sets the value of :py:attr:`seed`. 

""" 

return self._set(seed=value) 

 

@since("3.0.0") 

def setWeightCol(self, value): 

""" 

Sets the value of :py:attr:`weightCol`. 

""" 

return self._set(weightCol=value) 

 

@since("3.0.0") 

def setMinWeightFractionPerNode(self, value): 

""" 

Sets the value of :py:attr:`minWeightFractionPerNode`. 

""" 

return self._set(minWeightFractionPerNode=value) 

 

 

class RandomForestRegressionModel( 

_JavaRegressionModel, _TreeEnsembleModel, _RandomForestRegressorParams, 

JavaMLWritable, JavaMLReadable 

): 

""" 

Model fitted by :class:`RandomForestRegressor`. 

 

.. versionadded:: 1.4.0 

""" 

 

@property 

@since("2.0.0") 

def trees(self): 

"""Trees in this ensemble. Warning: These have null parent Estimators.""" 

return [DecisionTreeRegressionModel(m) for m in list(self._call_java("trees"))] 

 

@property 

def featureImportances(self): 

""" 

Estimate of the importance of each feature. 

 

Each feature's importance is the average of its importance across all trees in the ensemble 

The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. 

(Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) 

and follows the implementation from scikit-learn. 

 

.. versionadded:: 2.0.0 

 

Examples 

-------- 

DecisionTreeRegressionModel.featureImportances 

""" 

return self._call_java("featureImportances") 

 

 

class _GBTRegressorParams(_GBTParams, _TreeRegressorParams): 

""" 

Params for :py:class:`GBTRegressor` and :py:class:`GBTRegressorModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

supportedLossTypes = ["squared", "absolute"] 

 

lossType = Param(Params._dummy(), "lossType", 

"Loss function which GBT tries to minimize (case-insensitive). " + 

"Supported options: " + ", ".join(supportedLossTypes), 

typeConverter=TypeConverters.toString) 

 

def __init__(self, *args): 

super(_GBTRegressorParams, self).__init__(*args) 

self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, 

checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, 

impurity="variance", featureSubsetStrategy="all", validationTol=0.01, 

leafCol="", minWeightFractionPerNode=0.0) 

 

@since("1.4.0") 

def getLossType(self): 

""" 

Gets the value of lossType or its default value. 

""" 

return self.getOrDefault(self.lossType) 

 

 

@inherit_doc 

class GBTRegressor(_JavaRegressor, _GBTRegressorParams, JavaMLWritable, JavaMLReadable): 

""" 

`Gradient-Boosted Trees (GBTs) <http://en.wikipedia.org/wiki/Gradient_boosting>`_ 

learning algorithm for regression. 

It supports both continuous and categorical features. 

 

.. versionadded:: 1.4.0 

 

Examples 

-------- 

>>> from numpy import allclose 

>>> from pyspark.ml.linalg import Vectors 

>>> df = spark.createDataFrame([ 

... (1.0, Vectors.dense(1.0)), 

... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) 

>>> gbt = GBTRegressor(maxDepth=2, seed=42, leafCol="leafId") 

>>> gbt.setMaxIter(5) 

GBTRegressor... 

>>> gbt.setMinWeightFractionPerNode(0.049) 

GBTRegressor... 

>>> gbt.getMaxIter() 

5 

>>> print(gbt.getImpurity()) 

variance 

>>> print(gbt.getFeatureSubsetStrategy()) 

all 

>>> model = gbt.fit(df) 

>>> model.featureImportances 

SparseVector(1, {0: 1.0}) 

>>> model.numFeatures 

1 

>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1]) 

True 

>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) 

>>> model.predict(test0.head().features) 

0.0 

>>> model.predictLeaf(test0.head().features) 

DenseVector([0.0, 0.0, 0.0, 0.0, 0.0]) 

>>> result = model.transform(test0).head() 

>>> result.prediction 

0.0 

>>> result.leafId 

DenseVector([0.0, 0.0, 0.0, 0.0, 0.0]) 

>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) 

>>> model.transform(test1).head().prediction 

1.0 

>>> gbtr_path = temp_path + "gbtr" 

>>> gbt.save(gbtr_path) 

>>> gbt2 = GBTRegressor.load(gbtr_path) 

>>> gbt2.getMaxDepth() 

2 

>>> model_path = temp_path + "gbtr_model" 

>>> model.save(model_path) 

>>> model2 = GBTRegressionModel.load(model_path) 

>>> model.featureImportances == model2.featureImportances 

True 

>>> model.treeWeights == model2.treeWeights 

True 

>>> model.transform(test0).take(1) == model2.transform(test0).take(1) 

True 

>>> model.trees 

[DecisionTreeRegressionModel...depth=..., DecisionTreeRegressionModel...] 

>>> validation = spark.createDataFrame([(0.0, Vectors.dense(-1.0))], 

... ["label", "features"]) 

>>> model.evaluateEachIteration(validation, "squared") 

[0.0, 0.0, 0.0, 0.0, 0.0] 

>>> gbt = gbt.setValidationIndicatorCol("validationIndicator") 

>>> gbt.getValidationIndicatorCol() 

'validationIndicator' 

>>> gbt.getValidationTol() 

0.01 

""" 

 

@keyword_only 

def __init__(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, 

checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, 

impurity="variance", featureSubsetStrategy="all", validationTol=0.01, 

validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, 

weightCol=None): 

""" 

__init__(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ 

maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \ 

checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, \ 

impurity="variance", featureSubsetStrategy="all", validationTol=0.01, \ 

validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, 

weightCol=None) 

""" 

super(GBTRegressor, self).__init__() 

self._java_obj = self._new_java_obj("org.apache.spark.ml.regression.GBTRegressor", self.uid) 

kwargs = self._input_kwargs 

self.setParams(**kwargs) 

 

@keyword_only 

@since("1.4.0") 

def setParams(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 

maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, 

checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, 

impurity="variance", featureSubsetStrategy="all", validationTol=0.01, 

validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, 

weightCol=None): 

""" 

setParams(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ 

maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \ 

checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, \ 

impurity="variance", featureSubsetStrategy="all", validationTol=0.01, \ 

validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, \ 

weightCol=None) 

Sets params for Gradient Boosted Tree Regression. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return GBTRegressionModel(java_model) 

 

@since("1.4.0") 

def setMaxDepth(self, value): 

""" 

Sets the value of :py:attr:`maxDepth`. 

""" 

return self._set(maxDepth=value) 

 

@since("1.4.0") 

def setMaxBins(self, value): 

""" 

Sets the value of :py:attr:`maxBins`. 

""" 

return self._set(maxBins=value) 

 

@since("1.4.0") 

def setMinInstancesPerNode(self, value): 

""" 

Sets the value of :py:attr:`minInstancesPerNode`. 

""" 

return self._set(minInstancesPerNode=value) 

 

@since("1.4.0") 

def setMinInfoGain(self, value): 

""" 

Sets the value of :py:attr:`minInfoGain`. 

""" 

return self._set(minInfoGain=value) 

 

@since("1.4.0") 

def setMaxMemoryInMB(self, value): 

""" 

Sets the value of :py:attr:`maxMemoryInMB`. 

""" 

return self._set(maxMemoryInMB=value) 

 

@since("1.4.0") 

def setCacheNodeIds(self, value): 

""" 

Sets the value of :py:attr:`cacheNodeIds`. 

""" 

return self._set(cacheNodeIds=value) 

 

@since("1.4.0") 

def setImpurity(self, value): 

""" 

Sets the value of :py:attr:`impurity`. 

""" 

return self._set(impurity=value) 

 

@since("1.4.0") 

def setLossType(self, value): 

""" 

Sets the value of :py:attr:`lossType`. 

""" 

return self._set(lossType=value) 

 

@since("1.4.0") 

def setSubsamplingRate(self, value): 

""" 

Sets the value of :py:attr:`subsamplingRate`. 

""" 

return self._set(subsamplingRate=value) 

 

@since("2.4.0") 

def setFeatureSubsetStrategy(self, value): 

""" 

Sets the value of :py:attr:`featureSubsetStrategy`. 

""" 

return self._set(featureSubsetStrategy=value) 

 

@since("3.0.0") 

def setValidationIndicatorCol(self, value): 

""" 

Sets the value of :py:attr:`validationIndicatorCol`. 

""" 

return self._set(validationIndicatorCol=value) 

 

@since("1.4.0") 

def setMaxIter(self, value): 

""" 

Sets the value of :py:attr:`maxIter`. 

""" 

return self._set(maxIter=value) 

 

@since("1.4.0") 

def setCheckpointInterval(self, value): 

""" 

Sets the value of :py:attr:`checkpointInterval`. 

""" 

return self._set(checkpointInterval=value) 

 

@since("1.4.0") 

def setSeed(self, value): 

""" 

Sets the value of :py:attr:`seed`. 

""" 

return self._set(seed=value) 

 

@since("1.4.0") 

def setStepSize(self, value): 

""" 

Sets the value of :py:attr:`stepSize`. 

""" 

return self._set(stepSize=value) 

 

@since("3.0.0") 

def setWeightCol(self, value): 

""" 

Sets the value of :py:attr:`weightCol`. 

""" 

return self._set(weightCol=value) 

 

@since("3.0.0") 

def setMinWeightFractionPerNode(self, value): 

""" 

Sets the value of :py:attr:`minWeightFractionPerNode`. 

""" 

return self._set(minWeightFractionPerNode=value) 

 

 

class GBTRegressionModel( 

_JavaRegressionModel, _TreeEnsembleModel, _GBTRegressorParams, 

JavaMLWritable, JavaMLReadable 

): 

""" 

Model fitted by :class:`GBTRegressor`. 

 

.. versionadded:: 1.4.0 

""" 

 

@property 

def featureImportances(self): 

""" 

Estimate of the importance of each feature. 

 

Each feature's importance is the average of its importance across all trees in the ensemble 

The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. 

(Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) 

and follows the implementation from scikit-learn. 

 

.. versionadded:: 2.0.0 

 

Examples 

-------- 

DecisionTreeRegressionModel.featureImportances 

""" 

return self._call_java("featureImportances") 

 

@property 

@since("2.0.0") 

def trees(self): 

"""Trees in this ensemble. Warning: These have null parent Estimators.""" 

return [DecisionTreeRegressionModel(m) for m in list(self._call_java("trees"))] 

 

def evaluateEachIteration(self, dataset, loss): 

""" 

Method to compute error or loss for every iteration of gradient boosting. 

 

.. versionadded:: 2.4.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

Test dataset to evaluate model on, where dataset is an 

instance of :py:class:`pyspark.sql.DataFrame` 

loss : str 

The loss function used to compute error. 

Supported options: squared, absolute 

""" 

return self._call_java("evaluateEachIteration", dataset, loss) 

 

 

class _AFTSurvivalRegressionParams(_PredictorParams, HasMaxIter, HasTol, HasFitIntercept, 

HasAggregationDepth, HasMaxBlockSizeInMB): 

""" 

Params for :py:class:`AFTSurvivalRegression` and :py:class:`AFTSurvivalRegressionModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

censorCol = Param( 

Params._dummy(), "censorCol", 

"censor column name. The value of this column could be 0 or 1. " + 

"If the value is 1, it means the event has occurred i.e. " + 

"uncensored; otherwise censored.", typeConverter=TypeConverters.toString) 

quantileProbabilities = Param( 

Params._dummy(), "quantileProbabilities", 

"quantile probabilities array. Values of the quantile probabilities array " + 

"should be in the range (0, 1) and the array should be non-empty.", 

typeConverter=TypeConverters.toListFloat) 

quantilesCol = Param( 

Params._dummy(), "quantilesCol", 

"quantiles column name. This column will output quantiles of " + 

"corresponding quantileProbabilities if it is set.", 

typeConverter=TypeConverters.toString) 

 

def __init__(self, *args): 

super(_AFTSurvivalRegressionParams, self).__init__(*args) 

self._setDefault(censorCol="censor", 

quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], 

maxIter=100, tol=1E-6, maxBlockSizeInMB=0.0) 

 

@since("1.6.0") 

def getCensorCol(self): 

""" 

Gets the value of censorCol or its default value. 

""" 

return self.getOrDefault(self.censorCol) 

 

@since("1.6.0") 

def getQuantileProbabilities(self): 

""" 

Gets the value of quantileProbabilities or its default value. 

""" 

return self.getOrDefault(self.quantileProbabilities) 

 

@since("1.6.0") 

def getQuantilesCol(self): 

""" 

Gets the value of quantilesCol or its default value. 

""" 

return self.getOrDefault(self.quantilesCol) 

 

 

@inherit_doc 

class AFTSurvivalRegression(_JavaRegressor, _AFTSurvivalRegressionParams, 

JavaMLWritable, JavaMLReadable): 

""" 

Accelerated Failure Time (AFT) Model Survival Regression 

 

Fit a parametric AFT survival regression model based on the Weibull distribution 

of the survival time. 

 

Notes 

----- 

For more information see Wikipedia page on 

`AFT Model <https://en.wikipedia.org/wiki/Accelerated_failure_time_model>`_ 

 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import Vectors 

>>> df = spark.createDataFrame([ 

... (1.0, Vectors.dense(1.0), 1.0), 

... (1e-40, Vectors.sparse(1, [], []), 0.0)], ["label", "features", "censor"]) 

>>> aftsr = AFTSurvivalRegression() 

>>> aftsr.setMaxIter(10) 

AFTSurvivalRegression... 

>>> aftsr.getMaxIter() 

10 

>>> aftsr.clear(aftsr.maxIter) 

>>> model = aftsr.fit(df) 

>>> model.getMaxBlockSizeInMB() 

0.0 

>>> model.setFeaturesCol("features") 

AFTSurvivalRegressionModel... 

>>> model.predict(Vectors.dense(6.3)) 

1.0 

>>> model.predictQuantiles(Vectors.dense(6.3)) 

DenseVector([0.0101, 0.0513, 0.1054, 0.2877, 0.6931, 1.3863, 2.3026, 2.9957, 4.6052]) 

>>> model.transform(df).show() 

+-------+---------+------+----------+ 

| label| features|censor|prediction| 

+-------+---------+------+----------+ 

| 1.0| [1.0]| 1.0| 1.0| 

|1.0E-40|(1,[],[])| 0.0| 1.0| 

+-------+---------+------+----------+ 

... 

>>> aftsr_path = temp_path + "/aftsr" 

>>> aftsr.save(aftsr_path) 

>>> aftsr2 = AFTSurvivalRegression.load(aftsr_path) 

>>> aftsr2.getMaxIter() 

100 

>>> model_path = temp_path + "/aftsr_model" 

>>> model.save(model_path) 

>>> model2 = AFTSurvivalRegressionModel.load(model_path) 

>>> model.coefficients == model2.coefficients 

True 

>>> model.intercept == model2.intercept 

True 

>>> model.scale == model2.scale 

True 

>>> model.transform(df).take(1) == model2.transform(df).take(1) 

True 

 

.. versionadded:: 1.6.0 

""" 

 

@keyword_only 

def __init__(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", 

quantileProbabilities=list([0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]), # noqa: B005 

quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0): 

""" 

__init__(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", \ 

quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], \ 

quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0) 

""" 

super(AFTSurvivalRegression, self).__init__() 

self._java_obj = self._new_java_obj( 

"org.apache.spark.ml.regression.AFTSurvivalRegression", self.uid) 

kwargs = self._input_kwargs 

self.setParams(**kwargs) 

 

@keyword_only 

@since("1.6.0") 

def setParams(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", 

quantileProbabilities=list([0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]), # noqa: B005 

quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0): 

""" 

setParams(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", \ 

quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], \ 

quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0): 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return AFTSurvivalRegressionModel(java_model) 

 

@since("1.6.0") 

def setCensorCol(self, value): 

""" 

Sets the value of :py:attr:`censorCol`. 

""" 

return self._set(censorCol=value) 

 

@since("1.6.0") 

def setQuantileProbabilities(self, value): 

""" 

Sets the value of :py:attr:`quantileProbabilities`. 

""" 

return self._set(quantileProbabilities=value) 

 

@since("1.6.0") 

def setQuantilesCol(self, value): 

""" 

Sets the value of :py:attr:`quantilesCol`. 

""" 

return self._set(quantilesCol=value) 

 

@since("1.6.0") 

def setMaxIter(self, value): 

""" 

Sets the value of :py:attr:`maxIter`. 

""" 

return self._set(maxIter=value) 

 

@since("1.6.0") 

def setTol(self, value): 

""" 

Sets the value of :py:attr:`tol`. 

""" 

return self._set(tol=value) 

 

@since("1.6.0") 

def setFitIntercept(self, value): 

""" 

Sets the value of :py:attr:`fitIntercept`. 

""" 

return self._set(fitIntercept=value) 

 

@since("2.1.0") 

def setAggregationDepth(self, value): 

""" 

Sets the value of :py:attr:`aggregationDepth`. 

""" 

return self._set(aggregationDepth=value) 

 

@since("3.1.0") 

def setMaxBlockSizeInMB(self, value): 

""" 

Sets the value of :py:attr:`maxBlockSizeInMB`. 

""" 

return self._set(maxBlockSizeInMB=value) 

 

 

class AFTSurvivalRegressionModel(_JavaRegressionModel, _AFTSurvivalRegressionParams, 

JavaMLWritable, JavaMLReadable): 

""" 

Model fitted by :class:`AFTSurvivalRegression`. 

 

.. versionadded:: 1.6.0 

""" 

 

@since("3.0.0") 

def setQuantileProbabilities(self, value): 

""" 

Sets the value of :py:attr:`quantileProbabilities`. 

""" 

return self._set(quantileProbabilities=value) 

 

@since("3.0.0") 

def setQuantilesCol(self, value): 

""" 

Sets the value of :py:attr:`quantilesCol`. 

""" 

return self._set(quantilesCol=value) 

 

@property 

@since("2.0.0") 

def coefficients(self): 

""" 

Model coefficients. 

""" 

return self._call_java("coefficients") 

 

@property 

@since("1.6.0") 

def intercept(self): 

""" 

Model intercept. 

""" 

return self._call_java("intercept") 

 

@property 

@since("1.6.0") 

def scale(self): 

""" 

Model scale parameter. 

""" 

return self._call_java("scale") 

 

@since("2.0.0") 

def predictQuantiles(self, features): 

""" 

Predicted Quantiles 

""" 

return self._call_java("predictQuantiles", features) 

 

 

class _GeneralizedLinearRegressionParams(_PredictorParams, HasFitIntercept, HasMaxIter, 

HasTol, HasRegParam, HasWeightCol, HasSolver, 

HasAggregationDepth): 

""" 

Params for :py:class:`GeneralizedLinearRegression` and 

:py:class:`GeneralizedLinearRegressionModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

family = Param(Params._dummy(), "family", "The name of family which is a description of " + 

"the error distribution to be used in the model. Supported options: " + 

"gaussian (default), binomial, poisson, gamma and tweedie.", 

typeConverter=TypeConverters.toString) 

link = Param(Params._dummy(), "link", "The name of link function which provides the " + 

"relationship between the linear predictor and the mean of the distribution " + 

"function. Supported options: identity, log, inverse, logit, probit, cloglog " + 

"and sqrt.", typeConverter=TypeConverters.toString) 

linkPredictionCol = Param(Params._dummy(), "linkPredictionCol", "link prediction (linear " + 

"predictor) column name", typeConverter=TypeConverters.toString) 

variancePower = Param(Params._dummy(), "variancePower", "The power in the variance function " + 

"of the Tweedie distribution which characterizes the relationship " + 

"between the variance and mean of the distribution. Only applicable " + 

"for the Tweedie family. Supported values: 0 and [1, Inf).", 

typeConverter=TypeConverters.toFloat) 

linkPower = Param(Params._dummy(), "linkPower", "The index in the power link function. " + 

"Only applicable to the Tweedie family.", 

typeConverter=TypeConverters.toFloat) 

solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + 

"options: irls.", typeConverter=TypeConverters.toString) 

offsetCol = Param(Params._dummy(), "offsetCol", "The offset column name. If this is not set " + 

"or empty, we treat all instance offsets as 0.0", 

typeConverter=TypeConverters.toString) 

 

def __init__(self, *args): 

super(_GeneralizedLinearRegressionParams, self).__init__(*args) 

self._setDefault(family="gaussian", maxIter=25, tol=1e-6, regParam=0.0, solver="irls", 

variancePower=0.0, aggregationDepth=2) 

 

@since("2.0.0") 

def getFamily(self): 

""" 

Gets the value of family or its default value. 

""" 

return self.getOrDefault(self.family) 

 

@since("2.0.0") 

def getLinkPredictionCol(self): 

""" 

Gets the value of linkPredictionCol or its default value. 

""" 

return self.getOrDefault(self.linkPredictionCol) 

 

@since("2.0.0") 

def getLink(self): 

""" 

Gets the value of link or its default value. 

""" 

return self.getOrDefault(self.link) 

 

@since("2.2.0") 

def getVariancePower(self): 

""" 

Gets the value of variancePower or its default value. 

""" 

return self.getOrDefault(self.variancePower) 

 

@since("2.2.0") 

def getLinkPower(self): 

""" 

Gets the value of linkPower or its default value. 

""" 

return self.getOrDefault(self.linkPower) 

 

@since("2.3.0") 

def getOffsetCol(self): 

""" 

Gets the value of offsetCol or its default value. 

""" 

return self.getOrDefault(self.offsetCol) 

 

 

@inherit_doc 

class GeneralizedLinearRegression(_JavaRegressor, _GeneralizedLinearRegressionParams, 

JavaMLWritable, JavaMLReadable): 

""" 

Generalized Linear Regression. 

 

Fit a Generalized Linear Model specified by giving a symbolic description of the linear 

predictor (link function) and a description of the error distribution (family). It supports 

"gaussian", "binomial", "poisson", "gamma" and "tweedie" as family. Valid link functions for 

each family is listed below. The first link function of each family is the default one. 

 

* "gaussian" -> "identity", "log", "inverse" 

 

* "binomial" -> "logit", "probit", "cloglog" 

 

* "poisson" -> "log", "identity", "sqrt" 

 

* "gamma" -> "inverse", "identity", "log" 

 

* "tweedie" -> power link function specified through "linkPower". \ 

The default link power in the tweedie family is 1 - variancePower. 

 

.. versionadded:: 2.0.0 

 

Notes 

----- 

For more information see Wikipedia page on 

`GLM <https://en.wikipedia.org/wiki/Generalized_linear_model>`_ 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import Vectors 

>>> df = spark.createDataFrame([ 

... (1.0, Vectors.dense(0.0, 0.0)), 

... (1.0, Vectors.dense(1.0, 2.0)), 

... (2.0, Vectors.dense(0.0, 0.0)), 

... (2.0, Vectors.dense(1.0, 1.0)),], ["label", "features"]) 

>>> glr = GeneralizedLinearRegression(family="gaussian", link="identity", linkPredictionCol="p") 

>>> glr.setRegParam(0.1) 

GeneralizedLinearRegression... 

>>> glr.getRegParam() 

0.1 

>>> glr.clear(glr.regParam) 

>>> glr.setMaxIter(10) 

GeneralizedLinearRegression... 

>>> glr.getMaxIter() 

10 

>>> glr.clear(glr.maxIter) 

>>> model = glr.fit(df) 

>>> model.setFeaturesCol("features") 

GeneralizedLinearRegressionModel... 

>>> model.getMaxIter() 

25 

>>> model.getAggregationDepth() 

2 

>>> transformed = model.transform(df) 

>>> abs(transformed.head().prediction - 1.5) < 0.001 

True 

>>> abs(transformed.head().p - 1.5) < 0.001 

True 

>>> model.coefficients 

DenseVector([1.5..., -1.0...]) 

>>> model.numFeatures 

2 

>>> abs(model.intercept - 1.5) < 0.001 

True 

>>> glr_path = temp_path + "/glr" 

>>> glr.save(glr_path) 

>>> glr2 = GeneralizedLinearRegression.load(glr_path) 

>>> glr.getFamily() == glr2.getFamily() 

True 

>>> model_path = temp_path + "/glr_model" 

>>> model.save(model_path) 

>>> model2 = GeneralizedLinearRegressionModel.load(model_path) 

>>> model.intercept == model2.intercept 

True 

>>> model.coefficients[0] == model2.coefficients[0] 

True 

>>> model.transform(df).take(1) == model2.transform(df).take(1) 

True 

""" 

 

@keyword_only 

def __init__(self, *, labelCol="label", featuresCol="features", predictionCol="prediction", 

family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, 

regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, 

variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2): 

""" 

__init__(self, \\*, labelCol="label", featuresCol="features", predictionCol="prediction", \ 

family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \ 

regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \ 

variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2) 

""" 

super(GeneralizedLinearRegression, self).__init__() 

self._java_obj = self._new_java_obj( 

"org.apache.spark.ml.regression.GeneralizedLinearRegression", self.uid) 

kwargs = self._input_kwargs 

 

self.setParams(**kwargs) 

 

@keyword_only 

@since("2.0.0") 

def setParams(self, *, labelCol="label", featuresCol="features", predictionCol="prediction", 

family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, 

regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, 

variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2): 

""" 

setParams(self, \\*, labelCol="label", featuresCol="features", predictionCol="prediction", \ 

family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \ 

regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \ 

variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2) 

Sets params for generalized linear regression. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return GeneralizedLinearRegressionModel(java_model) 

 

@since("2.0.0") 

def setFamily(self, value): 

""" 

Sets the value of :py:attr:`family`. 

""" 

return self._set(family=value) 

 

@since("2.0.0") 

def setLinkPredictionCol(self, value): 

""" 

Sets the value of :py:attr:`linkPredictionCol`. 

""" 

return self._set(linkPredictionCol=value) 

 

@since("2.0.0") 

def setLink(self, value): 

""" 

Sets the value of :py:attr:`link`. 

""" 

return self._set(link=value) 

 

@since("2.2.0") 

def setVariancePower(self, value): 

""" 

Sets the value of :py:attr:`variancePower`. 

""" 

return self._set(variancePower=value) 

 

@since("2.2.0") 

def setLinkPower(self, value): 

""" 

Sets the value of :py:attr:`linkPower`. 

""" 

return self._set(linkPower=value) 

 

@since("2.3.0") 

def setOffsetCol(self, value): 

""" 

Sets the value of :py:attr:`offsetCol`. 

""" 

return self._set(offsetCol=value) 

 

@since("2.0.0") 

def setMaxIter(self, value): 

""" 

Sets the value of :py:attr:`maxIter`. 

""" 

return self._set(maxIter=value) 

 

@since("2.0.0") 

def setRegParam(self, value): 

""" 

Sets the value of :py:attr:`regParam`. 

""" 

return self._set(regParam=value) 

 

@since("2.0.0") 

def setTol(self, value): 

""" 

Sets the value of :py:attr:`tol`. 

""" 

return self._set(tol=value) 

 

@since("2.0.0") 

def setFitIntercept(self, value): 

""" 

Sets the value of :py:attr:`fitIntercept`. 

""" 

return self._set(fitIntercept=value) 

 

@since("2.0.0") 

def setWeightCol(self, value): 

""" 

Sets the value of :py:attr:`weightCol`. 

""" 

return self._set(weightCol=value) 

 

@since("2.0.0") 

def setSolver(self, value): 

""" 

Sets the value of :py:attr:`solver`. 

""" 

return self._set(solver=value) 

 

@since("3.0.0") 

def setAggregationDepth(self, value): 

""" 

Sets the value of :py:attr:`aggregationDepth`. 

""" 

return self._set(aggregationDepth=value) 

 

 

class GeneralizedLinearRegressionModel(_JavaRegressionModel, _GeneralizedLinearRegressionParams, 

JavaMLWritable, JavaMLReadable, HasTrainingSummary): 

""" 

Model fitted by :class:`GeneralizedLinearRegression`. 

 

.. versionadded:: 2.0.0 

""" 

 

@since("3.0.0") 

def setLinkPredictionCol(self, value): 

""" 

Sets the value of :py:attr:`linkPredictionCol`. 

""" 

return self._set(linkPredictionCol=value) 

 

@property 

@since("2.0.0") 

def coefficients(self): 

""" 

Model coefficients. 

""" 

return self._call_java("coefficients") 

 

@property 

@since("2.0.0") 

def intercept(self): 

""" 

Model intercept. 

""" 

return self._call_java("intercept") 

 

@property 

@since("2.0.0") 

def summary(self): 

""" 

Gets summary (residuals, deviance, p-values) of model on 

training set. An exception is thrown if 

`trainingSummary is None`. 

""" 

2277 ↛ 2281line 2277 didn't jump to line 2281, because the condition on line 2277 was never false if self.hasSummary: 

return GeneralizedLinearRegressionTrainingSummary( 

super(GeneralizedLinearRegressionModel, self).summary) 

else: 

raise RuntimeError("No training summary available for this %s" % 

self.__class__.__name__) 

 

def evaluate(self, dataset): 

""" 

Evaluates the model on a test dataset. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

dataset : :py:class:`pyspark.sql.DataFrame` 

Test dataset to evaluate model on, where dataset is an 

instance of :py:class:`pyspark.sql.DataFrame` 

""" 

if not isinstance(dataset, DataFrame): 

raise TypeError("dataset must be a DataFrame but got %s." % type(dataset)) 

java_glr_summary = self._call_java("evaluate", dataset) 

return GeneralizedLinearRegressionSummary(java_glr_summary) 

 

 

class GeneralizedLinearRegressionSummary(JavaWrapper): 

""" 

Generalized linear regression results evaluated on a dataset. 

 

.. versionadded:: 2.0.0 

""" 

 

@property 

@since("2.0.0") 

def predictions(self): 

""" 

Predictions output by the model's `transform` method. 

""" 

return self._call_java("predictions") 

 

@property 

@since("2.0.0") 

def predictionCol(self): 

""" 

Field in :py:attr:`predictions` which gives the predicted value of each instance. 

This is set to a new column name if the original model's `predictionCol` is not set. 

""" 

return self._call_java("predictionCol") 

 

@property 

@since("2.2.0") 

def numInstances(self): 

""" 

Number of instances in DataFrame predictions. 

""" 

return self._call_java("numInstances") 

 

@property 

@since("2.0.0") 

def rank(self): 

""" 

The numeric rank of the fitted linear model. 

""" 

return self._call_java("rank") 

 

@property 

@since("2.0.0") 

def degreesOfFreedom(self): 

""" 

Degrees of freedom. 

""" 

return self._call_java("degreesOfFreedom") 

 

@property 

@since("2.0.0") 

def residualDegreeOfFreedom(self): 

""" 

The residual degrees of freedom. 

""" 

return self._call_java("residualDegreeOfFreedom") 

 

@property 

@since("2.0.0") 

def residualDegreeOfFreedomNull(self): 

""" 

The residual degrees of freedom for the null model. 

""" 

return self._call_java("residualDegreeOfFreedomNull") 

 

def residuals(self, residualsType="deviance"): 

""" 

Get the residuals of the fitted model by type. 

 

.. versionadded:: 2.0.0 

 

Parameters 

---------- 

residualsType : str, optional 

The type of residuals which should be returned. 

Supported options: deviance (default), pearson, working, and response. 

""" 

return self._call_java("residuals", residualsType) 

 

@property 

@since("2.0.0") 

def nullDeviance(self): 

""" 

The deviance for the null model. 

""" 

return self._call_java("nullDeviance") 

 

@property 

@since("2.0.0") 

def deviance(self): 

""" 

The deviance for the fitted model. 

""" 

return self._call_java("deviance") 

 

@property 

@since("2.0.0") 

def dispersion(self): 

""" 

The dispersion of the fitted model. 

It is taken as 1.0 for the "binomial" and "poisson" families, and otherwise 

estimated by the residual Pearson's Chi-Squared statistic (which is defined as 

sum of the squares of the Pearson residuals) divided by the residual degrees of freedom. 

""" 

return self._call_java("dispersion") 

 

@property 

@since("2.0.0") 

def aic(self): 

""" 

Akaike's "An Information Criterion"(AIC) for the fitted model. 

""" 

return self._call_java("aic") 

 

 

@inherit_doc 

class GeneralizedLinearRegressionTrainingSummary(GeneralizedLinearRegressionSummary): 

""" 

Generalized linear regression training results. 

 

.. versionadded:: 2.0.0 

""" 

 

@property 

@since("2.0.0") 

def numIterations(self): 

""" 

Number of training iterations. 

""" 

return self._call_java("numIterations") 

 

@property 

@since("2.0.0") 

def solver(self): 

""" 

The numeric solver used for training. 

""" 

return self._call_java("solver") 

 

@property 

@since("2.0.0") 

def coefficientStandardErrors(self): 

""" 

Standard error of estimated coefficients and intercept. 

 

If :py:attr:`GeneralizedLinearRegression.fitIntercept` is set to True, 

then the last element returned corresponds to the intercept. 

""" 

return self._call_java("coefficientStandardErrors") 

 

@property 

@since("2.0.0") 

def tValues(self): 

""" 

T-statistic of estimated coefficients and intercept. 

 

If :py:attr:`GeneralizedLinearRegression.fitIntercept` is set to True, 

then the last element returned corresponds to the intercept. 

""" 

return self._call_java("tValues") 

 

@property 

@since("2.0.0") 

def pValues(self): 

""" 

Two-sided p-value of estimated coefficients and intercept. 

 

If :py:attr:`GeneralizedLinearRegression.fitIntercept` is set to True, 

then the last element returned corresponds to the intercept. 

""" 

return self._call_java("pValues") 

 

def __repr__(self): 

return self._call_java("toString") 

 

 

class _FactorizationMachinesParams(_PredictorParams, HasMaxIter, HasStepSize, HasTol, 

HasSolver, HasSeed, HasFitIntercept, HasRegParam, HasWeightCol): 

""" 

Params for :py:class:`FMRegressor`, :py:class:`FMRegressionModel`, :py:class:`FMClassifier` 

and :py:class:`FMClassifierModel`. 

 

.. versionadded:: 3.0.0 

""" 

 

factorSize = Param(Params._dummy(), "factorSize", "Dimensionality of the factor vectors, " + 

"which are used to get pairwise interactions between variables", 

typeConverter=TypeConverters.toInt) 

 

fitLinear = Param(Params._dummy(), "fitLinear", "whether to fit linear term (aka 1-way term)", 

typeConverter=TypeConverters.toBoolean) 

 

miniBatchFraction = Param(Params._dummy(), "miniBatchFraction", "fraction of the input data " + 

"set that should be used for one iteration of gradient descent", 

typeConverter=TypeConverters.toFloat) 

 

initStd = Param(Params._dummy(), "initStd", "standard deviation of initial coefficients", 

typeConverter=TypeConverters.toFloat) 

 

solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + 

"options: gd, adamW. (Default adamW)", typeConverter=TypeConverters.toString) 

 

def __init__(self, *args): 

super(_FactorizationMachinesParams, self).__init__(*args) 

self._setDefault(factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, 

miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, 

tol=1e-6, solver="adamW") 

 

@since("3.0.0") 

def getFactorSize(self): 

""" 

Gets the value of factorSize or its default value. 

""" 

return self.getOrDefault(self.factorSize) 

 

@since("3.0.0") 

def getFitLinear(self): 

""" 

Gets the value of fitLinear or its default value. 

""" 

return self.getOrDefault(self.fitLinear) 

 

@since("3.0.0") 

def getMiniBatchFraction(self): 

""" 

Gets the value of miniBatchFraction or its default value. 

""" 

return self.getOrDefault(self.miniBatchFraction) 

 

@since("3.0.0") 

def getInitStd(self): 

""" 

Gets the value of initStd or its default value. 

""" 

return self.getOrDefault(self.initStd) 

 

 

@inherit_doc 

class FMRegressor(_JavaRegressor, _FactorizationMachinesParams, JavaMLWritable, JavaMLReadable): 

""" 

Factorization Machines learning algorithm for regression. 

 

solver Supports: 

 

* gd (normal mini-batch gradient descent) 

* adamW (default) 

 

.. versionadded:: 3.0.0 

 

Examples 

-------- 

>>> from pyspark.ml.linalg import Vectors 

>>> from pyspark.ml.regression import FMRegressor 

>>> df = spark.createDataFrame([ 

... (2.0, Vectors.dense(2.0)), 

... (1.0, Vectors.dense(1.0)), 

... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) 

>>> 

>>> fm = FMRegressor(factorSize=2) 

>>> fm.setSeed(16) 

FMRegressor... 

>>> model = fm.fit(df) 

>>> model.getMaxIter() 

100 

>>> test0 = spark.createDataFrame([ 

... (Vectors.dense(-2.0),), 

... (Vectors.dense(0.5),), 

... (Vectors.dense(1.0),), 

... (Vectors.dense(4.0),)], ["features"]) 

>>> model.transform(test0).show(10, False) 

+--------+-------------------+ 

|features|prediction | 

+--------+-------------------+ 

|[-2.0] |-1.9989237712341565| 

|[0.5] |0.4956682219523814 | 

|[1.0] |0.994586620589689 | 

|[4.0] |3.9880970124135344 | 

+--------+-------------------+ 

... 

>>> model.intercept 

-0.0032501766849261557 

>>> model.linear 

DenseVector([0.9978]) 

>>> model.factors 

DenseMatrix(1, 2, [0.0173, 0.0021], 1) 

>>> model_path = temp_path + "/fm_model" 

>>> model.save(model_path) 

>>> model2 = FMRegressionModel.load(model_path) 

>>> model2.intercept 

-0.0032501766849261557 

>>> model2.linear 

DenseVector([0.9978]) 

>>> model2.factors 

DenseMatrix(1, 2, [0.0173, 0.0021], 1) 

>>> model.transform(test0).take(1) == model2.transform(test0).take(1) 

True 

""" 

 

@keyword_only 

def __init__(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, 

miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, 

tol=1e-6, solver="adamW", seed=None): 

""" 

__init__(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, \ 

miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, \ 

tol=1e-6, solver="adamW", seed=None) 

""" 

super(FMRegressor, self).__init__() 

self._java_obj = self._new_java_obj( 

"org.apache.spark.ml.regression.FMRegressor", self.uid) 

kwargs = self._input_kwargs 

self.setParams(**kwargs) 

 

@keyword_only 

@since("3.0.0") 

def setParams(self, *, featuresCol="features", labelCol="label", predictionCol="prediction", 

factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, 

miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, 

tol=1e-6, solver="adamW", seed=None): 

""" 

setParams(self, \\*, featuresCol="features", labelCol="label", predictionCol="prediction", \ 

factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, \ 

miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, \ 

tol=1e-6, solver="adamW", seed=None) 

Sets Params for FMRegressor. 

""" 

kwargs = self._input_kwargs 

return self._set(**kwargs) 

 

def _create_model(self, java_model): 

return FMRegressionModel(java_model) 

 

@since("3.0.0") 

def setFactorSize(self, value): 

""" 

Sets the value of :py:attr:`factorSize`. 

""" 

return self._set(factorSize=value) 

 

@since("3.0.0") 

def setFitLinear(self, value): 

""" 

Sets the value of :py:attr:`fitLinear`. 

""" 

return self._set(fitLinear=value) 

 

@since("3.0.0") 

def setMiniBatchFraction(self, value): 

""" 

Sets the value of :py:attr:`miniBatchFraction`. 

""" 

return self._set(miniBatchFraction=value) 

 

@since("3.0.0") 

def setInitStd(self, value): 

""" 

Sets the value of :py:attr:`initStd`. 

""" 

return self._set(initStd=value) 

 

@since("3.0.0") 

def setMaxIter(self, value): 

""" 

Sets the value of :py:attr:`maxIter`. 

""" 

return self._set(maxIter=value) 

 

@since("3.0.0") 

def setStepSize(self, value): 

""" 

Sets the value of :py:attr:`stepSize`. 

""" 

return self._set(stepSize=value) 

 

@since("3.0.0") 

def setTol(self, value): 

""" 

Sets the value of :py:attr:`tol`. 

""" 

return self._set(tol=value) 

 

@since("3.0.0") 

def setSolver(self, value): 

""" 

Sets the value of :py:attr:`solver`. 

""" 

return self._set(solver=value) 

 

@since("3.0.0") 

def setSeed(self, value): 

""" 

Sets the value of :py:attr:`seed`. 

""" 

return self._set(seed=value) 

 

@since("3.0.0") 

def setFitIntercept(self, value): 

""" 

Sets the value of :py:attr:`fitIntercept`. 

""" 

return self._set(fitIntercept=value) 

 

@since("3.0.0") 

def setRegParam(self, value): 

""" 

Sets the value of :py:attr:`regParam`. 

""" 

return self._set(regParam=value) 

 

 

class FMRegressionModel(_JavaRegressionModel, _FactorizationMachinesParams, JavaMLWritable, 

JavaMLReadable): 

""" 

Model fitted by :class:`FMRegressor`. 

 

.. versionadded:: 3.0.0 

""" 

 

@property 

@since("3.0.0") 

def intercept(self): 

""" 

Model intercept. 

""" 

return self._call_java("intercept") 

 

@property 

@since("3.0.0") 

def linear(self): 

""" 

Model linear term. 

""" 

return self._call_java("linear") 

 

@property 

@since("3.0.0") 

def factors(self): 

""" 

Model factor term. 

""" 

return self._call_java("factors") 

 

 

if __name__ == "__main__": 

import doctest 

import pyspark.ml.regression 

from pyspark.sql import SparkSession 

globs = pyspark.ml.regression.__dict__.copy() 

# The small batch size here ensures that we see multiple batches, 

# even in these small test examples: 

spark = SparkSession.builder\ 

.master("local[2]")\ 

.appName("ml.regression tests")\ 

.getOrCreate() 

sc = spark.sparkContext 

globs['sc'] = sc 

globs['spark'] = spark 

import tempfile 

temp_path = tempfile.mkdtemp() 

globs['temp_path'] = temp_path 

try: 

(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 

spark.stop() 

finally: 

from shutil import rmtree 

try: 

rmtree(temp_path) 

except OSError: 

pass 

2772 ↛ 2773line 2772 didn't jump to line 2773, because the condition on line 2772 was never true if failure_count: 

sys.exit(-1)