Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

# 

# Licensed to the Apache Software Foundation (ASF) under one or more 

# contributor license agreements. See the NOTICE file distributed with 

# this work for additional information regarding copyright ownership. 

# The ASF licenses this file to You under the Apache License, Version 2.0 

# (the "License"); you may not use this file except in compliance with 

# the License. You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# 

 

""" 

DataFrame-based machine learning APIs to let users quickly assemble and configure practical 

machine learning pipelines. 

""" 

from pyspark.ml.base import Estimator, Model, Predictor, PredictionModel, \ 

Transformer, UnaryTransformer 

from pyspark.ml.pipeline import Pipeline, PipelineModel 

from pyspark.ml import classification, clustering, evaluation, feature, fpm, \ 

image, recommendation, regression, stat, tuning, util, linalg, param 

 

__all__ = [ 

"Transformer", "UnaryTransformer", "Estimator", "Model", 

"Predictor", "PredictionModel", "Pipeline", "PipelineModel", 

"classification", "clustering", "evaluation", "feature", "fpm", "image", 

"recommendation", "regression", "stat", "tuning", "util", "linalg", "param", 

]