Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

""" 

This class is defined to override standard pickle functionality 

 

The goals of it follow: 

-Serialize lambdas and nested functions to compiled byte code 

-Deal with main module correctly 

-Deal with other non-serializable objects 

 

It does not include an unpickler, as standard python unpickling suffices. 

 

This module was extracted from the `cloud` package, developed by `PiCloud, Inc. 

<https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_. 

 

Copyright (c) 2012, Regents of the University of California. 

Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_. 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions 

are met: 

* Redistributions of source code must retain the above copyright 

notice, this list of conditions and the following disclaimer. 

* Redistributions in binary form must reproduce the above copyright 

notice, this list of conditions and the following disclaimer in the 

documentation and/or other materials provided with the distribution. 

* Neither the name of the University of California, Berkeley nor the 

names of its contributors may be used to endorse or promote 

products derived from this software without specific prior written 

permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

""" 

from __future__ import print_function 

 

import builtins 

import dis 

import opcode 

import platform 

import sys 

import types 

import weakref 

import uuid 

import threading 

import typing 

import warnings 

 

from .compat import pickle 

from typing import Generic, Union, Tuple, Callable 

from pickle import _getattribute 

from importlib._bootstrap import _find_spec 

 

try: # pragma: no branch 

import typing_extensions as _typing_extensions 

from typing_extensions import Literal, Final 

except ImportError: 

_typing_extensions = Literal = Final = None 

 

if sys.version_info >= (3, 5, 3): 

from typing import ClassVar 

else: # pragma: no cover 

ClassVar = None 

 

73 ↛ 74line 73 didn't jump to line 74, because the condition on line 73 was never trueif sys.version_info >= (3, 8): 

from types import CellType 

else: 

def f(): 

a = 1 

 

def g(): 

return a 

return g 

CellType = type(f().__closure__[0]) 

 

 

# cloudpickle is meant for inter process communication: we expect all 

# communicating processes to run the same Python version hence we favor 

# communication speed over compatibility: 

DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL 

 

# Track the provenance of reconstructed dynamic classes to make it possible to 

# recontruct instances from the matching singleton class definition when 

# appropriate and preserve the usual "isinstance" semantics of Python objects. 

_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary() 

_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary() 

_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock() 

 

PYPY = platform.python_implementation() == "PyPy" 

 

builtin_code_type = None 

if PYPY: 

# builtin-code objects only exist in pypy 

builtin_code_type = type(float.__new__.__code__) 

 

_extract_code_globals_cache = weakref.WeakKeyDictionary() 

 

 

def _get_or_create_tracker_id(class_def): 

with _DYNAMIC_CLASS_TRACKER_LOCK: 

class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def) 

if class_tracker_id is None: 

class_tracker_id = uuid.uuid4().hex 

_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id 

_DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def 

return class_tracker_id 

 

 

def _lookup_class_or_track(class_tracker_id, class_def): 

118 ↛ 123line 118 didn't jump to line 123, because the condition on line 118 was never false if class_tracker_id is not None: 

with _DYNAMIC_CLASS_TRACKER_LOCK: 

class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault( 

class_tracker_id, class_def) 

_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id 

return class_def 

 

 

def _whichmodule(obj, name): 

"""Find the module an object belongs to. 

 

This function differs from ``pickle.whichmodule`` in two ways: 

- it does not mangle the cases where obj's module is __main__ and obj was 

not found in any module. 

- Errors arising during module introspection are ignored, as those errors 

are considered unwanted side effects. 

""" 

if sys.version_info[:2] < (3, 7) and isinstance(obj, typing.TypeVar): # pragma: no branch # noqa 

# Workaround bug in old Python versions: prior to Python 3.7, 

# T.__module__ would always be set to "typing" even when the TypeVar T 

# would be defined in a different module. 

# 

# For such older Python versions, we ignore the __module__ attribute of 

# TypeVar instances and instead exhaustively lookup those instances in 

# all currently imported modules. 

module_name = None 

else: 

module_name = getattr(obj, '__module__', None) 

 

if module_name is not None: 

return module_name 

# Protect the iteration by using a copy of sys.modules against dynamic 

# modules that trigger imports of other modules upon calls to getattr or 

# other threads importing at the same time. 

152 ↛ 166line 152 didn't jump to line 166, because the loop on line 152 didn't complete for module_name, module in sys.modules.copy().items(): 

# Some modules such as coverage can inject non-module objects inside 

# sys.modules 

155 ↛ 160line 155 didn't jump to line 160 if ( 

module_name == '__main__' or 

module is None or 

not isinstance(module, types.ModuleType) 

): 

continue 

try: 

162 ↛ 152line 162 didn't jump to line 152, because the condition on line 162 was never false if _getattribute(module, name)[0] is obj: 

return module_name 

except Exception: 

pass 

return None 

 

 

def _is_importable(obj, name=None): 

"""Dispatcher utility to test the importability of various constructs.""" 

if isinstance(obj, types.FunctionType): 

return _lookup_module_and_qualname(obj, name=name) is not None 

elif issubclass(type(obj), type): 

return _lookup_module_and_qualname(obj, name=name) is not None 

175 ↛ 183line 175 didn't jump to line 183, because the condition on line 175 was never false elif isinstance(obj, types.ModuleType): 

# We assume that sys.modules is primarily used as a cache mechanism for 

# the Python import machinery. Checking if a module has been added in 

# is sys.modules therefore a cheap and simple heuristic to tell us whether 

# we can assume that a given module could be imported by name in 

# another Python process. 

return obj.__name__ in sys.modules 

else: 

raise TypeError( 

"cannot check importability of {} instances".format( 

type(obj).__name__) 

) 

 

 

def _lookup_module_and_qualname(obj, name=None): 

if name is None: 

name = getattr(obj, '__qualname__', None) 

if name is None: # pragma: no cover 

# This used to be needed for Python 2.7 support but is probably not 

# needed anymore. However we keep the __name__ introspection in case 

# users of cloudpickle rely on this old behavior for unknown reasons. 

name = getattr(obj, '__name__', None) 

 

module_name = _whichmodule(obj, name) 

 

200 ↛ 203line 200 didn't jump to line 203, because the condition on line 200 was never true if module_name is None: 

# In this case, obj.__module__ is None AND obj was not found in any 

# imported module. obj is thus treated as dynamic. 

return None 

 

if module_name == "__main__": 

return None 

 

# Note: if module_name is in sys.modules, the corresponding module is 

# assumed importable at unpickling time. See #357 

module = sys.modules.get(module_name, None) 

if module is None: 

# The main reason why obj's module would not be imported is that this 

# module has been dynamically created, using for example 

# types.ModuleType. The other possibility is that module was removed 

# from sys.modules after obj was created/imported. But this case is not 

# supported, as the standard pickle does not support it either. 

return None 

 

try: 

obj2, parent = _getattribute(module, name) 

except AttributeError: 

# obj was not found inside the module it points to 

return None 

224 ↛ 225line 224 didn't jump to line 225, because the condition on line 224 was never true if obj2 is not obj: 

return None 

return module, name 

 

 

def _extract_code_globals(co): 

""" 

Find all globals names read or written to by codeblock co 

""" 

out_names = _extract_code_globals_cache.get(co) 

if out_names is None: 

names = co.co_names 

out_names = {names[oparg] for _, oparg in _walk_global_ops(co)} 

 

# Declaring a function inside another one using the "def ..." 

# syntax generates a constant code object corresonding to the one 

# of the nested function's As the nested function may itself need 

# global variables, we need to introspect its code, extract its 

# globals, (look for code object in it's co_consts attribute..) and 

# add the result to code_globals 

if co.co_consts: 

for const in co.co_consts: 

if isinstance(const, types.CodeType): 

out_names |= _extract_code_globals(const) 

 

_extract_code_globals_cache[co] = out_names 

 

return out_names 

 

 

def _find_imported_submodules(code, top_level_dependencies): 

""" 

Find currently imported submodules used by a function. 

 

Submodules used by a function need to be detected and referenced for the 

function to work correctly at depickling time. Because submodules can be 

referenced as attribute of their parent package (``package.submodule``), we 

need a special introspection technique that does not rely on GLOBAL-related 

opcodes to find references of them in a code object. 

 

Example: 

``` 

import concurrent.futures 

import cloudpickle 

def func(): 

x = concurrent.futures.ThreadPoolExecutor 

if __name__ == '__main__': 

cloudpickle.dumps(func) 

``` 

The globals extracted by cloudpickle in the function's state include the 

concurrent package, but not its submodule (here, concurrent.futures), which 

is the module used by func. Find_imported_submodules will detect the usage 

of concurrent.futures. Saving this module alongside with func will ensure 

that calling func once depickled does not fail due to concurrent.futures 

not being imported 

""" 

 

subimports = [] 

# check if any known dependency is an imported package 

for x in top_level_dependencies: 

284 ↛ 287line 284 didn't jump to line 287, because the condition on line 284 was never true if (isinstance(x, types.ModuleType) and 

hasattr(x, '__package__') and x.__package__): 

# check if the package has any currently loaded sub-imports 

prefix = x.__name__ + '.' 

# A concurrent thread could mutate sys.modules, 

# make sure we iterate over a copy to avoid exceptions 

for name in list(sys.modules): 

# Older versions of pytest will add a "None" module to 

# sys.modules. 

if name is not None and name.startswith(prefix): 

# check whether the function can address the sub-module 

tokens = set(name[len(prefix):].split('.')) 

if not tokens - set(code.co_names): 

subimports.append(sys.modules[name]) 

return subimports 

 

 

def cell_set(cell, value): 

"""Set the value of a closure cell. 

 

The point of this function is to set the cell_contents attribute of a cell 

after its creation. This operation is necessary in case the cell contains a 

reference to the function the cell belongs to, as when calling the 

function's constructor 

``f = types.FunctionType(code, globals, name, argdefs, closure)``, 

closure will not be able to contain the yet-to-be-created f. 

 

In Python3.7, cell_contents is writeable, so setting the contents of a cell 

can be done simply using 

>>> cell.cell_contents = value 

 

In earlier Python3 versions, the cell_contents attribute of a cell is read 

only, but this limitation can be worked around by leveraging the Python 3 

``nonlocal`` keyword. 

 

In Python2 however, this attribute is read only, and there is no 

``nonlocal`` keyword. For this reason, we need to come up with more 

complicated hacks to set this attribute. 

 

The chosen approach is to create a function with a STORE_DEREF opcode, 

which sets the content of a closure variable. Typically: 

 

>>> def inner(value): 

... lambda: cell # the lambda makes cell a closure 

... cell = value # cell is a closure, so this triggers a STORE_DEREF 

 

(Note that in Python2, A STORE_DEREF can never be triggered from an inner 

function. The function g for example here 

>>> def f(var): 

... def g(): 

... var += 1 

... return g 

 

will not modify the closure variable ``var```inplace, but instead try to 

load a local variable var and increment it. As g does not assign the local 

variable ``var`` any initial value, calling f(1)() will fail at runtime.) 

 

Our objective is to set the value of a given cell ``cell``. So we need to 

somewhat reference our ``cell`` object into the ``inner`` function so that 

this object (and not the smoke cell of the lambda function) gets affected 

by the STORE_DEREF operation. 

 

In inner, ``cell`` is referenced as a cell variable (an enclosing variable 

that is referenced by the inner function). If we create a new function 

cell_set with the exact same code as ``inner``, but with ``cell`` marked as 

a free variable instead, the STORE_DEREF will be applied on its closure - 

``cell``, which we can specify explicitly during construction! The new 

cell_set variable thus actually sets the contents of a specified cell! 

 

Note: we do not make use of the ``nonlocal`` keyword to set the contents of 

a cell in early python3 versions to limit possible syntax errors in case 

test and checker libraries decide to parse the whole file. 

""" 

 

if sys.version_info[:2] >= (3, 7): # pragma: no branch 

cell.cell_contents = value 

else: 

_cell_set = types.FunctionType( 

_cell_set_template_code, {}, '_cell_set', (), (cell,),) 

_cell_set(value) 

 

 

def _make_cell_set_template_code(): 

def _cell_set_factory(value): 

368 ↛ exitline 368 didn't run the lambda on line 368 lambda: cell 

cell = value 

 

co = _cell_set_factory.__code__ 

 

_cell_set_template_code = types.CodeType( 

co.co_argcount, 

co.co_kwonlyargcount, # Python 3 only argument 

co.co_nlocals, 

co.co_stacksize, 

co.co_flags, 

co.co_code, 

co.co_consts, 

co.co_names, 

co.co_varnames, 

co.co_filename, 

co.co_name, 

co.co_firstlineno, 

co.co_lnotab, 

co.co_cellvars, # co_freevars is initialized with co_cellvars 

(), # co_cellvars is made empty 

) 

return _cell_set_template_code 

 

 

393 ↛ 397line 393 didn't jump to line 397, because the condition on line 393 was never falseif sys.version_info[:2] < (3, 7): 

_cell_set_template_code = _make_cell_set_template_code() 

 

# relevant opcodes 

STORE_GLOBAL = opcode.opmap['STORE_GLOBAL'] 

DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL'] 

LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL'] 

GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL) 

HAVE_ARGUMENT = dis.HAVE_ARGUMENT 

EXTENDED_ARG = dis.EXTENDED_ARG 

 

 

_BUILTIN_TYPE_NAMES = {} 

for k, v in types.__dict__.items(): 

if type(v) is type: 

_BUILTIN_TYPE_NAMES[v] = k 

 

 

def _builtin_type(name): 

if name == "ClassType": # pragma: no cover 

# Backward compat to load pickle files generated with cloudpickle 

# < 1.3 even if loading pickle files from older versions is not 

# officially supported. 

return type 

return getattr(types, name) 

 

 

def _walk_global_ops(code): 

""" 

Yield (opcode, argument number) tuples for all 

global-referencing instructions in *code*. 

""" 

for instr in dis.get_instructions(code): 

op = instr.opcode 

if op in GLOBAL_OPS: 

yield op, instr.arg 

 

 

def _extract_class_dict(cls): 

"""Retrieve a copy of the dict of a class without the inherited methods""" 

clsdict = dict(cls.__dict__) # copy dict proxy to a dict 

434 ↛ 437line 434 didn't jump to line 437, because the condition on line 434 was never false if len(cls.__bases__) == 1: 

inherited_dict = cls.__bases__[0].__dict__ 

else: 

inherited_dict = {} 

for base in reversed(cls.__bases__): 

inherited_dict.update(base.__dict__) 

to_remove = [] 

for name, value in clsdict.items(): 

try: 

base_value = inherited_dict[name] 

if value is base_value: 

to_remove.append(name) 

except KeyError: 

pass 

for name in to_remove: 

clsdict.pop(name) 

return clsdict 

 

 

if sys.version_info[:2] < (3, 7): # pragma: no branch 

def _is_parametrized_type_hint(obj): 

# This is very cheap but might generate false positives. 

# general typing Constructs 

is_typing = getattr(obj, '__origin__', None) is not None 

 

# typing_extensions.Literal 

is_litteral = getattr(obj, '__values__', None) is not None 

 

# typing_extensions.Final 

is_final = getattr(obj, '__type__', None) is not None 

 

# typing.Union/Tuple for old Python 3.5 

is_union = getattr(obj, '__union_params__', None) is not None 

is_tuple = getattr(obj, '__tuple_params__', None) is not None 

is_callable = ( 

getattr(obj, '__result__', None) is not None and 

getattr(obj, '__args__', None) is not None 

) 

return any((is_typing, is_litteral, is_final, is_union, is_tuple, 

is_callable)) 

 

def _create_parametrized_type_hint(origin, args): 

return origin[args] 

else: 

_is_parametrized_type_hint = None 

_create_parametrized_type_hint = None 

 

 

def parametrized_type_hint_getinitargs(obj): 

# The distorted type check sematic for typing construct becomes: 

# ``type(obj) is type(TypeHint)``, which means "obj is a 

# parametrized TypeHint" 

if type(obj) is type(Literal): # pragma: no branch 

initargs = (Literal, obj.__values__) 

elif type(obj) is type(Final): # pragma: no branch 

initargs = (Final, obj.__type__) 

elif type(obj) is type(ClassVar): 

initargs = (ClassVar, obj.__type__) 

elif type(obj) is type(Generic): 

parameters = obj.__parameters__ 

if len(obj.__parameters__) > 0: 

# in early Python 3.5, __parameters__ was sometimes 

# preferred to __args__ 

initargs = (obj.__origin__, parameters) 

 

else: 

initargs = (obj.__origin__, obj.__args__) 

elif type(obj) is type(Union): 

if sys.version_info < (3, 5, 3): # pragma: no cover 

initargs = (Union, obj.__union_params__) 

else: 

initargs = (Union, obj.__args__) 

elif type(obj) is type(Tuple): 

if sys.version_info < (3, 5, 3): # pragma: no cover 

initargs = (Tuple, obj.__tuple_params__) 

else: 

initargs = (Tuple, obj.__args__) 

elif type(obj) is type(Callable): 

if sys.version_info < (3, 5, 3): # pragma: no cover 

args = obj.__args__ 

result = obj.__result__ 

if args != Ellipsis: 

if isinstance(args, tuple): 

args = list(args) 

else: 

args = [args] 

else: 

(*args, result) = obj.__args__ 

if len(args) == 1 and args[0] is Ellipsis: 

args = Ellipsis 

else: 

args = list(args) 

initargs = (Callable, (args, result)) 

else: # pragma: no cover 

raise pickle.PicklingError( 

"Cloudpickle Error: Unknown type {}".format(type(obj)) 

) 

return initargs 

 

 

# Tornado support 

 

def is_tornado_coroutine(func): 

""" 

Return whether *func* is a Tornado coroutine function. 

Running coroutines are not supported. 

""" 

if 'tornado.gen' not in sys.modules: 

return False 

gen = sys.modules['tornado.gen'] 

if not hasattr(gen, "is_coroutine_function"): 

# Tornado version is too old 

return False 

return gen.is_coroutine_function(func) 

 

 

def _rebuild_tornado_coroutine(func): 

from tornado import gen 

return gen.coroutine(func) 

 

 

# including pickles unloading functions in this namespace 

load = pickle.load 

loads = pickle.loads 

 

 

# hack for __import__ not working as desired 

def subimport(name): 

__import__(name) 

return sys.modules[name] 

 

 

def dynamic_subimport(name, vars): 

mod = types.ModuleType(name) 

mod.__dict__.update(vars) 

mod.__dict__['__builtins__'] = builtins.__dict__ 

return mod 

 

 

def _gen_ellipsis(): 

return Ellipsis 

 

 

def _gen_not_implemented(): 

return NotImplemented 

 

 

def _get_cell_contents(cell): 

try: 

return cell.cell_contents 

except ValueError: 

# sentinel used by ``_fill_function`` which will leave the cell empty 

return _empty_cell_value 

 

 

def instance(cls): 

"""Create a new instance of a class. 

 

Parameters 

---------- 

cls : type 

The class to create an instance of. 

 

Returns 

------- 

instance : cls 

A new instance of ``cls``. 

""" 

return cls() 

 

 

@instance 

class _empty_cell_value(object): 

"""sentinel for empty closures 

""" 

@classmethod 

def __reduce__(cls): 

return cls.__name__ 

 

 

def _fill_function(*args): 

"""Fills in the rest of function data into the skeleton function object 

 

The skeleton itself is create by _make_skel_func(). 

""" 

if len(args) == 2: 

func = args[0] 

state = args[1] 

elif len(args) == 5: 

# Backwards compat for cloudpickle v0.4.0, after which the `module` 

# argument was introduced 

func = args[0] 

keys = ['globals', 'defaults', 'dict', 'closure_values'] 

state = dict(zip(keys, args[1:])) 

elif len(args) == 6: 

# Backwards compat for cloudpickle v0.4.1, after which the function 

# state was passed as a dict to the _fill_function it-self. 

func = args[0] 

keys = ['globals', 'defaults', 'dict', 'module', 'closure_values'] 

state = dict(zip(keys, args[1:])) 

else: 

raise ValueError('Unexpected _fill_value arguments: %r' % (args,)) 

 

# - At pickling time, any dynamic global variable used by func is 

# serialized by value (in state['globals']). 

# - At unpickling time, func's __globals__ attribute is initialized by 

# first retrieving an empty isolated namespace that will be shared 

# with other functions pickled from the same original module 

# by the same CloudPickler instance and then updated with the 

# content of state['globals'] to populate the shared isolated 

# namespace with all the global variables that are specifically 

# referenced for this function. 

func.__globals__.update(state['globals']) 

 

func.__defaults__ = state['defaults'] 

func.__dict__ = state['dict'] 

if 'annotations' in state: 

func.__annotations__ = state['annotations'] 

if 'doc' in state: 

func.__doc__ = state['doc'] 

if 'name' in state: 

func.__name__ = state['name'] 

if 'module' in state: 

func.__module__ = state['module'] 

if 'qualname' in state: 

func.__qualname__ = state['qualname'] 

if 'kwdefaults' in state: 

func.__kwdefaults__ = state['kwdefaults'] 

# _cloudpickle_subimports is a set of submodules that must be loaded for 

# the pickled function to work correctly at unpickling time. Now that these 

# submodules are depickled (hence imported), they can be removed from the 

# object's state (the object state only served as a reference holder to 

# these submodules) 

if '_cloudpickle_submodules' in state: 

state.pop('_cloudpickle_submodules') 

 

cells = func.__closure__ 

if cells is not None: 

for cell, value in zip(cells, state['closure_values']): 

if value is not _empty_cell_value: 

cell_set(cell, value) 

 

return func 

 

 

def _make_empty_cell(): 

if False: 

# trick the compiler into creating an empty cell in our lambda 

cell = None 

raise AssertionError('this route should not be executed') 

 

685 ↛ exitline 685 didn't run the lambda on line 685 return (lambda: cell).__closure__[0] 

 

 

def _make_cell(value=_empty_cell_value): 

cell = _make_empty_cell() 

690 ↛ 692line 690 didn't jump to line 692, because the condition on line 690 was never false if value is not _empty_cell_value: 

cell_set(cell, value) 

return cell 

 

 

def _make_skel_func(code, cell_count, base_globals=None): 

""" Creates a skeleton function object that contains just the provided 

code and the correct number of cells in func_closure. All other 

func attributes (e.g. func_globals) are empty. 

""" 

# This function is deprecated and should be removed in cloudpickle 1.7 

warnings.warn( 

"A pickle file created using an old (<=1.4.1) version of cloudpicke " 

"is currently being loaded. This is not supported by cloudpickle and " 

"will break in cloudpickle 1.7", category=UserWarning 

) 

# This is backward-compatibility code: for cloudpickle versions between 

# 0.5.4 and 0.7, base_globals could be a string or None. base_globals 

# should now always be a dictionary. 

if base_globals is None or isinstance(base_globals, str): 

base_globals = {} 

 

base_globals['__builtins__'] = __builtins__ 

 

closure = ( 

tuple(_make_empty_cell() for _ in range(cell_count)) 

if cell_count >= 0 else 

None 

) 

return types.FunctionType(code, base_globals, None, None, closure) 

 

 

def _make_skeleton_class(type_constructor, name, bases, type_kwargs, 

class_tracker_id, extra): 

"""Build dynamic class with an empty __dict__ to be filled once memoized 

 

If class_tracker_id is not None, try to lookup an existing class definition 

matching that id. If none is found, track a newly reconstructed class 

definition under that id so that other instances stemming from the same 

class id will also reuse this class definition. 

 

The "extra" variable is meant to be a dict (or None) that can be used for 

forward compatibility shall the need arise. 

""" 

skeleton_class = types.new_class( 

name, bases, {'metaclass': type_constructor}, 

lambda ns: ns.update(type_kwargs) 

) 

return _lookup_class_or_track(class_tracker_id, skeleton_class) 

 

 

def _rehydrate_skeleton_class(skeleton_class, class_dict): 

"""Put attributes from `class_dict` back on `skeleton_class`. 

 

See CloudPickler.save_dynamic_class for more info. 

""" 

registry = None 

for attrname, attr in class_dict.items(): 

if attrname == "_abc_impl": 

registry = attr 

else: 

setattr(skeleton_class, attrname, attr) 

if registry is not None: 

for subclass in registry: 

skeleton_class.register(subclass) 

 

return skeleton_class 

 

 

def _make_skeleton_enum(bases, name, qualname, members, module, 

class_tracker_id, extra): 

"""Build dynamic enum with an empty __dict__ to be filled once memoized 

 

The creation of the enum class is inspired by the code of 

EnumMeta._create_. 

 

If class_tracker_id is not None, try to lookup an existing enum definition 

matching that id. If none is found, track a newly reconstructed enum 

definition under that id so that other instances stemming from the same 

class id will also reuse this enum definition. 

 

The "extra" variable is meant to be a dict (or None) that can be used for 

forward compatibility shall the need arise. 

""" 

# enums always inherit from their base Enum class at the last position in 

# the list of base classes: 

enum_base = bases[-1] 

metacls = enum_base.__class__ 

classdict = metacls.__prepare__(name, bases) 

 

for member_name, member_value in members.items(): 

classdict[member_name] = member_value 

enum_class = metacls.__new__(metacls, name, bases, classdict) 

enum_class.__module__ = module 

enum_class.__qualname__ = qualname 

 

return _lookup_class_or_track(class_tracker_id, enum_class) 

 

 

def _make_typevar(name, bound, constraints, covariant, contravariant, 

class_tracker_id): 

tv = typing.TypeVar( 

name, *constraints, bound=bound, 

covariant=covariant, contravariant=contravariant 

) 

if class_tracker_id is not None: 

return _lookup_class_or_track(class_tracker_id, tv) 

else: # pragma: nocover 

# Only for Python 3.5.3 compat. 

return tv 

 

 

def _decompose_typevar(obj): 

try: 

class_tracker_id = _get_or_create_tracker_id(obj) 

except TypeError: # pragma: nocover 

# TypeVar instances are not weakref-able in Python 3.5.3 

class_tracker_id = None 

return ( 

obj.__name__, obj.__bound__, obj.__constraints__, 

obj.__covariant__, obj.__contravariant__, 

class_tracker_id, 

) 

 

 

def _typevar_reduce(obj): 

# TypeVar instances have no __qualname__ hence we pass the name explicitly. 

module_and_name = _lookup_module_and_qualname(obj, name=obj.__name__) 

if module_and_name is None: 

return (_make_typevar, _decompose_typevar(obj)) 

return (getattr, module_and_name) 

 

 

def _get_bases(typ): 

824 ↛ 826line 824 didn't jump to line 826, because the condition on line 824 was never true if hasattr(typ, '__orig_bases__'): 

# For generic types (see PEP 560) 

bases_attr = '__orig_bases__' 

else: 

# For regular class objects 

bases_attr = '__bases__' 

return getattr(typ, bases_attr) 

 

 

def _make_dict_keys(obj): 

return dict.fromkeys(obj).keys() 

 

 

def _make_dict_values(obj): 

return {i: _ for i, _ in enumerate(obj)}.values() 

 

 

def _make_dict_items(obj): 

return obj.items()